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Abstract

Pairs trading is an often deployed trading strategy by hedge funds which exploits relative
mispricing within two assets. In the present thesis, we empirically evaluate several copula-
based pairs trading variants against the two most commonly used pairs trading frameworks,
the distance and the cointegration approach. Additionally, we examine the use of the non-
linear correlation measures Kendall’s τ and Spearman’s ρ as pairs selection criteria- next to
the conventional methods, the Euclidean distance and the degree of spread mean-reversion.
Overall, we compare the performance of either strategy and selection criterion by means
of a high-frequency trading strategy on U.S. goldmine stocks, covering the time between
January 1998 and April 2016. Before transaction costs, we find all pairs trading method-
ologies to be highly profitable with daily mean excess returns of 13 - 104 bps and annual
Sharpe ratios of up to 6.25. Furthermore, neither strategy is greatly exposed to systematic
risk factors, leading to economically and statistically significant alphas. The simple distance
approach achieves highest excess returns, followed by the cointegration method. On the
contrary, the copula based framework performs comparably poor due to falsely estimated
parameter. Among the selection criteria, we find the degree of spread mean-reversion to
be most lucrative, followed by Kendall’s τ. After transaction costs, however, we observe a
different picture. Strongly declining returns in recent years suggest that neither of the vari-
ants remain profitable. Furthermore, both non-linear correlation measures outperform the
conventional criteria in terms of lower risk and higher average returns.
Keywords: pairs trading, distance, cointegration, copula, high-frequency, selection criteria
JEL Classification: G11, G12, G14
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1 Introduction

’Pairs trading’ is an investment strategy that is often deployed by hedge funds and proprietary

trading firms. It requires two closely related stocks that move together and trade at some spread.

If both stocks diverge (the spread widens) one constructs a long-short position betting that the

stock pair will converge eventually (the spread narrows).

Ever since Gerry Bamberger and Nunzio Tartaglia successfully pioneered pairs trading at Mor-

gan Stanley in the 1980s (Gatev, Goetzmann and Rouwenhorst, 2006), several academics pro-

posed techniques to compute the spread between stock pairs and consequently algorithms that

exploit trading opportunities. Two of the most commonly applied algorithms in previous liter-

ature are the distance method introduced by Gatev at al. (2006) and the cointegration method

best illustrated by Vidyamurthy (2004). Both techniques rely on the assumption that the se-

lected stocks are linearly related, which only holds as long as the data are normally distributed.

The fact that financial returns are rather leptokurtic than normally distributed in practice (Ling,

2006; Kat, 2003) raises concerns on whether trading signals created by the distance and coin-

tegration methods are accurate (Liew and Wu, 2013). To overcome this limitation, Xie, Liew,

Wu and Zou (2014) recently proposed an algorithm in which the stock pair dependency is mod-

elled with copulas. Copulas are flexible tools that allow a separate estimation of marginal and

joint distribution. Moreover, they are able to capture non-linear relations between random vari-

ables such as tail-dependence. Xie et al. (2014) select five stock pairs from the U.S. utility sector

based on a minimum distance measure and fit parametric marginal distributions to their re-

turns. Thereafter, they apply both their copula-based algorithm and the distance method on

each of the five selected pairs. On a daily frequency, they find that the copula-based method

generates higher excess returns and more trading opportunities than the distance method.

In this thesis, we aim to expand upon the research conducted by Xie et al. (2014). In partic-

ular, we (i) make use of three additional pairs selection criteria, (ii) estimate both parametric

and non-parametric marginal distributions, (iii) utilize constant and time-varying copulas and

most importantly (iv) apply their algorithm on a higher data frequency. Hence we can define

two main research questions. First, we evaluate all copula variants based on an intraday strat-

egy using minute resolution and check whether the copula-based algorithms remain superior
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to the benchmarks, the distance and the cointegration method. Second, we investigate how dif-

ferent pairs selection criteria affect the final trading performance of the algorithms. Specifically,

we evaluate two commonly used selection criteria, the minimum Euclidean distance and the

highest degree of spread mean-reversion criterion, against the two copula related non-linear

correlation measures Kendall’s tau and Spearman’s rho.

An investigation of the above described research goals helps investors to accumulate wealth.

Trading at higher frequency increases trading opportunities and thus might imply higher ex-

cess returns and information ratios (Aldridge, 2009). Similarly, a smart choice of pair-selection

enhances trading performance as well.

We empirically answer the research questions by testing the three methodologies on U.S. gold-

mine stock pairs. Goldmine stocks are closely related by nature since they similarly react on

gold price movements, making them decent candidates for intraday pairs trading. The minute

resolution dataset comprises the time between January 1998 and April 2016 and can be viewed

as a first of its kind dataset concerning high-frequency pairs trading applications in the previous

literature.

On each trading day within the sample period, we select the top stock pair according to the

four different selection criteria and consequently apply the three trading algorithms and their

variants. Thereafter, we compute performance metrics of the return series and present risk-

return characteristics, drawdown measures and common risk-factor dependencies of the trad-

ing strategies. Finally, we analyze the impact of transaction costs on the trading performance

under two different transaction cost schemes.

Before transaction costs, we find all three trading frameworks to be highly profitable with daily

mean excess returns of 13 - 104 bps. Among the three pairs trading approaches, the distance

method performs best, followed by the cointegration method. The copula-based framework

performs comparably poor due to falsely estimated parameter, which in turn led to wrong trans-

action signals. It turns out, that parametric marginals are superior to empirical ones and that

there is no significant difference between a constant and a time-varying copula approach. Among

the pairs selection criteria, we find the degree of spread mean-reversion to be most profitable,

followed by the non-linear correlation measure Kendall’s τ. Decisive for the superiority of both

criteria are more generated trading opportunities and a higher rate of winning trades. All pairs
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trading variants show highly appealing risk-return characteristics with annual Sharpe ratios of

up to 6.25. Furthermore, due to their low exposure to systematic risk, all variants generate eco-

nomically and statistically significant alphas. Over time, we examine a sharp decline in pairs

trading profitability and smaller differences in Sharpe ratios between the pairs trading frame-

works. Finally, transaction costs severely affect the before-mentioned findings. While the dis-

tance and cointegration approaches still achieve positive daily mean returns of up to 26 bps over

the whole sample, the declining returns in recent years suggest that neither of the pairs trading

methods will be lucrative anymore. Moreover, the non-linear correlation measures outperform

the conventional methods, both in terms of lower risk and higher average returns.

We structure the remainder of the thesis as follows. First, in Section 2, we position the thesis

within the existing literature. In Section 3, we describe the methodology behind the three pairs

trading methods. Thereafter, in Section 4, we apply the algorithms on U.S. goldmine stock pairs

and present the results of our investigation. Finally, in Section 5, we conclude and provide fur-

ther ideas for research.

2 Literature Review and Contribution

’Statistical arbitrage pairs trading’ is an anomaly that is firmly related to other long-short anoma-

lies such as lead-lag, reversal and violations of the law of one price, among others illustrated in

Jacobs (2015). The literature on pairs trading is steadily growing, yet relatively small compared

to momentum strategies, as introduced by Jegadeesh and Titman (1993). There are several dif-

ferent approaches of pairs trading, most of which summarized in Krauss (2015). In this the-

sis, however, we only focus on the two most common methods, the distance and cointegration

method, and the more recent copula approach:

• Distance approach: The distance method is the most thoroughly researched pairs trading

methodology. Its name stems from the simple way the spread is constructed. A large

’distance’ between co-moving assets serves as an indication for relative mispricing.

Gatev et al. (2006) introduce the distance approach in a seminal paper, which ever since

represents the most cited paper in the pairs trading literature1. Their sample comprises

1As of 9th of April 2015 Gatev et al. were cited 438 times on Google Scholar.
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all liquid U.S. stocks from the CRSP, daily from 1962 to 2002. They divide their sample

in formation periods of 12 months followed by trading periods of 6 months. During the

formation periods, they first construct cumulative return series for each stock under con-

sideration. Using these cumulative returns, they compute the sum of Euclidean squared

distance for all possible pair combinations. In the subsequent trading period, they select

the top 20 pairs with minimum distance, normalize prices with respect to the first day of

the trading period and construct the spread by subtracting one normalized stock price

from the other. Trades occur when the spread diverges by more than 2 historical σ and

are reversed upon delisting of a stock, mean-reversion of the spread or at the end of the

trading period. This strategy yields an annual excess return of 11%. Do, Faff and Hamza

(2006) indicate that this approach has several advantages: It is model-free, simple to im-

plement and robust to data-snooping. On the other hand, Krauss (2015) points out that

selecting pairs according to minimum Euclidean distance is suboptimal. An Euclidean

distance of zero, for instance, would yield no profit at all. A superior objective for pairs

selection should be rather based on a highly volatile and mean-reverting spread.

Do and Faff (2010) wrote the second most influential paper on the distance approach.

They replicate the paper by Gatev et al. (2006), however, extend the sample horizon by

seven years. They find a decline in pairs trading profitability, mostly due to the fact of

non-converging pairs and not due to increased hedge fund competition. Consequently,

they study two changes concerning the pairs selection process to enhance trading perfor-

mance. First, they restrict pairs to be only matchable within the same industry, hoping to

eliminate spurious pairs. Second, they select pairs subject to the amount of zero-crossings

of their spread in the formation period, which serves as an indication of more trading op-

portunity. Two years later, Do and Faff (2012) incorporate transaction costs in their anal-

ysis. Their findings show that the distance method becomes unprofitable when taking

commissions, market impact and short selling fees into account.

Further applications of the Gatev et al. (2006) algorithm conduct Bianchi, Drew and Zhu

(2009), Mori and Ziobrowski (2011), Broussard and Vaihekoski (2012) and Bowen and Hutchin-

son (2014). Most of the papers find significant excess returns on their tested samples.
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All of the above mentioned papers test the distance approach on daily data. To the best

of our knowledge, up until the time of writing there are only two high-frequency appli-

cations regarding the distance method. Nath (2003) is the first researcher, who applies

the distance method on high-frequency. Specifically, Nath tests a variant of the baseline

method of Gatev et al. (2006) on the secondary market of U.S. government debt from 1994

to 2000, using tick data. The strategy outperforms the benchmark, i.e. a duration matched

portfolio, concerning Gain-Loss and Sharpe ratio. Furthermore, Bowen, Hutchinson and

O’Sullivan (2010) inspect the performance of the distance method by applying it on the

FTSE 100 constitutes. Their sample ranges from January to December 2007, in 60 minute

frequency. Without transaction costs, the strategy produces remarkable excess returns of

20%. However, taking transaction costs and speed of execution into account, completely

diminishes the profitability.

• Cointegration approach: The cointegration method represents the second largest pillar

in pairs trading literature. As its name suggests, the main idea of this approach lies in find-

ing cointegrated pairs and using the cointegrated relation between the pairs to construct

the spread.

The most influential work about the cointegration approach is written by Vidyamurthy

(2004). Vidyamurthy provides a theoretical methodology without empirical application.

It comprises and describes three steps. The first step describes the pre-selection of possi-

bly cointegrated pairs. In this step, Vidyamurthy makes use of the Common Trends Model

(CTM) of Stock and Watson (1988), to decompose the log return of an asset into a com-

mon trend return and a specific return. A pair is cointegrated, if the common trend re-

turns of both assets are identical up to the cointegration coefficient. In order to find assets

with similar common trend returns, Vidyamurthy applies Arbitrage Pricing Theory (APT)

of Ross (1976). With APT, stock returns can be expressed as a factor model. Suggesting

that the common factor returns of APT correspond to the common trend returns of the

CTM, Vidyamurthy proposes to select pairs according to a distance metric, which is based

on the Pearson correlation coefficient of the common factor returns of all assets under

consideration. Pairs with the highest degree of correlated common factor returns are pre-
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selected for trading. The second step deals with the testing of tradability. Usually, this

step would entail to apply standard cointegration tests on the spread of a pair. However,

Vidyamurthy suggests to determine tradability by the time between two zero-crossings of

the spread during the formation period. A small time interval between zero-crossings in-

creases trading opportunities and decreases the holding period of both assets. Finally, in

step three, Vidyamurthy determines a trading rule design. Similarly to Gatev et al. (2006),

trades are executed when the spread deviates k historicalσ from its mean and closed upon

mean-reversion. However, contrary to Gatev et al. (2006), who fix k at 2σ, Vidyamurthy

suggests to find an optimal threshold k for each pair. The optimal threshold is gained by

taking that k, which maximizes profit during the formation period.

Girma and Paulson (1999) are one of the first who empirically apply the cointegration

framework. They define the spread as the difference between petroleum futures and fu-

tures with its refined end products as underlying, ranging from 1983 to 1994. The result-

ing spread variants are determined stationary according to the Phillips-Perron and the

Augmented Dickey-Fuller tests. Positions are opened when the spread deviates k cross-

sectional standard deviations from its cross-sectional moving average. On the other hand,

trades are reversed when the spread reverts to its own moving average. Girma and Paulson

(1999) successfully try five and ten-day moving averages as well as five possible thresholds

for k. Even with an inclusion of transaction costs, this strategy yields an average of around

15% annually. Using slightly different trading rules, Dunis, Laws and Evans (2006c) and

Cummins and Bucca (2012) find similar profitability by trading the same spreads. Dif-

ferent spreads are successfully traded by Simon (1999) and Emery and Liu (2002), both

using the same trading methodology as Girma and Paulson (1999). While Simon (1999)

applies the framework on the difference between soybean futures and its end products,

Emery and Liu (2002) examine the spread defined as the difference between natural gas

and electricity futures. The only unsuccessful application concerning commodity spreads

is documented by Wahab and Cohn (1994). They find the gold-silver spread to be unprof-

itable.

More recently, a couple of studies tested the cointegration framework on equities. For in-

stance, Caldeira and Moura (2013) examine the 50 most liquid stocks of the Brazilian stock
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index IBovespa over the time-frame 2005 to 2010, yielding 15% excess returns. Moreover,

Huck and Afawubo (2015) compare the performance of the distance and the cointegration

methods by applying them on all S&P 500 constituents. They conclude that the cointegra-

tion method significantly outperforms the distance approach.

Several other papers investigate the cointegration approach by applying it on various eq-

uities. Among others, Gutierrez and Tse (2011), Bogomolov (2011) and Li, Chui and Li

(2014), all confirming the profitability of the cointegration method.

Concerning high-frequency applications, we find three existing papers that address the

cointegration approach. The first one is Dunis, Giorgioni, Laws and Rudy (2010), testing

all constituents of the EuroStoxx 50 index. They test the algorithm on several high frequen-

cies, ranging from 5 to 60 minutes. Unfortunately, their high-frequency sample comprises

only five months within 2009, making their findings highly dependent on the short time-

frame. Their contribution lies in the finding that pairs with high in-sample ADF t-statistics

outperform out-of-sample in terms of information-ratio. The second high-frequency ap-

plication is conducted by Kishore (2012), who apply the cointegration framework on the

stock pair Exxon Mobil and Chevron during the year 2005. In their study, they focus on

finding optimal trading signals for that pair. Finally, Miao (2014) applies the cointegration

method on 177 U.S. gas and oil stocks, using 15 minute frequency from 2012 to 2013. Their

strategy produces a remarkable annual Sharpe ratio of 9.25.

• Copula approach: Compared to the above described pairs trading methodologies, little

research has been conducted concerning the copula method. This is due to the fact that

the application of copulas in economics and finance is still a relatively new concept. Pat-

ton (2008a) provides an overview about application possibilities of copulas in both areas

and Trivedi and Zimmer (2007) outline advantages of copulas in joint modelling of ran-

dom variables.

Ferreira (2008) introduces the idea of utilizing the dependence structure of copulas in

pairs trading. Ferreira suggests to use conditional copulas to determine whether condi-

tional prices are over or undervalued and illustrates the idea considering the stock pair

Fannie Mae (FNM) and Freddie Mac (FRE), on daily prices from 2007 to 2008. The author
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makes use of only one copula and fits parametric distributions to the marginals. Ferreira

(2008) concludes that further research needs to be conducted in understanding the rela-

tion between the copula method and fundamental analysis.

Stander, Marais and Botha (2013) propose a copula pairs trading strategy that triggers

trades when stock returns fall outside a certain confidence level, which is derived using

conditional copulas. Positions are closed after the stocks revert to their historical relation.

They apply this strategy on several pairs listed in the Johannesburg Stock Exchange, daily

from 2003 to 2008. In their application they make use of all 22 copulas listed in Nelsen

(2006) and estimate marginal distributions in both, parametric and non-parametric ways.

Their findings show that the strategy becomes unprofitable after transaction costs and

that the number of trading opportunities depend on the set confidence interval.

Liew and Wu (2013) use a similar trading strategy as Stander et al. (2013). They com-

pare the copula, distance and cointegration methods in means of one example stock pair

(BKD-ESC) on daily data from 2009 to 2012. In their application, they utilize the five most

commonly used copulas in the financial sector (Gaussian, Student-t, Gumbel, Clayton,

Frank) and fit parametric marginal distributions. They conclude that the copula method

implies more trading opportunity and is superior to the other approaches in terms of ex-

cess returns. This conclusion, however, is based on only that specific stock pair, which

raises concerns of the validity of their results.

One year later, Xie et al. (2014) published the paper, most relevant in the content of this

thesis. As outlined in the Introduction, they propose a new copula pairs trading strategy

and apply it on five selected pairs from the U.S. utility sector, daily from 2003 to 2012. In

terms of copula selection and fitting of marginals, they follow Liew and Wu (2013), as de-

scribed above. Eventually, they compare the results to the conventional distance method

and conclude a superiority of the copula method. While the distance framework leads to

insignificant excess returns, the copula method yields 3.6% annual excess returns on the

selected stock pairs. Interestingly, the more recent study by Rad, Low and Faff (2015) finds

contradictory results by comparing a similar copula algorithm to the distance and cointe-

gration approaches. Their daily data-set, comprising daily U.S. equity data from 1962 to
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2014, suggests a relatively poor performance of the copula method compared to the other

two frameworks.

While all of the above papers use conventional distance metrics for pairs selection, Krauss

and Stuebinger (2015) propose an interesting integrated copula-based selection method-

ology and test their algorithm on the S&P 100 constituents, leading to a Sharpe ratio of

1.52.

All copula-based pairs trading papers use constant copula parameter in their applica-

tion. In recent literature, a growing number of studies are devoted to time-varying cop-

ulas due to their ability of grasping changing dependency structures between random

variables. Manner and Reznikova (2012) have summarized several estimation methods

of time-varying copula parameter. They include, among others, autoregressive models,

dynamic conditional correlations and structural break tests. In contrast to these sophis-

ticated estimation methods, a rather simple way of modeling time variation is nowadays

used in many financial institutions, that is updating the copula parameter on a frequent

basis (Aussenegg and Cech, 2008). Aussenegg and Cech (2008) show that this approach of

updating the copula parameter is promising regarding the ability of forecasting the prob-

ability of joint extreme co-movements of stocks. Due to this fact, its wide application, and

its comparably low computation time, we utilize this method of estimating time-varying

copula parameter in this thesis.

It becomes apparent that extensive research has been conducted in terms of lower frequency

pairs trading applications. However, the literature clearly lacks tests conducted at higher fre-

quency. Up until today, we count only two high-frequency applications of the distance ap-

proach, three applications of the cointegration approach and none of the copula-based frame-

work. Among these applications, the longest time-span amounted to six years. Hence, this

thesis fills the gap of a long-horizon high-frequency application by testing all three frameworks

on minute data from January 1998 to April 2016. Concerning the copula method, we find no

application that uses time-varying copula parameter. Furthermore, only Krauss and Stuebinger

(2015) have tried a different pairs selection approach than using distance metrics. Therefore, we

further contribute to the literature by testing a time-varying copula algorithm and by investigat-
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ing whether non-linear correlation measures help in determining whether a pair is suitable for

trading.

3 Methodology

In this Section we describe all three trading frameworks in detail. We commence by outlining the

distance approach in Section 3.1. In Section 3.2, we sketch the cointegration approach. Finally,

in Section 3.3, we describe the copula approach. The latter includes a short introduction to

copulas, the estimation procedure of marginal distributions, a description of all utilized copulas,

the copula selection criterion and the algorithm of Xie et al. (2014). Furthermore, in Section 3.4,

we illustrate the four pairs selection criteria.

3.1 Distance Approach

Concerning the distance approach, we closely follow the algorithm provided by Gatev et al.

(2006). In this framework, the spread is constructed by subtracting one normalised price (NP)

from the other. Mathematically the spread at time t can be computed as

Spr eadt = N P1,t −N P2,t , (1)

where N Pi ,t = Pi ,t−Pi ,0
Pi ,0

denotes the cumulative return of stock i = 1,2 at time t with respect to the

starting point 0. The spread tells us the degree of divergence with respect to the starting point.

A positive spread, for instance, implies a relative over-pricing of asset 1 compared to asset 2. As

in most trading algorithms, the trading sample is divided into formation and trading periods.

• Formation period: During the formation period, we aim to learn about the behaviour of

the spread, in order to construct adequate trading signals. Setting the starting point t = 0

equal to the first day of the formation period, we first gather a series of the spread. There-

after, we simply compute the standard deviation σ of the spread to gain a sense of the

degree of pair-divergence.

• Trading period: During the trading period, we aim to profit from what we learnt before.

Optimally, the spread shows strong mean-reverting patterns. In this case, we can short
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the ’winner’ and buy the ’loser’ stock when the spread deviates by more than kσ and close

positions upon mean-reversion of the spread, i.e. if the spread crosses 0, or at the end of

the trading period. The spread in the trading period is computed by setting the starting

point t = 0 equal to the first day of the trading period.

3.2 Cointegration Approach

Contrary to the distance method, which defines the spread as the distance between standard-

ized prices, the cointegration approach derives the spread with the notion of error correction.

The concept of error correction is built upon the long-run equilibrium of two time series in a

cointegrated system (Vidyamurthy, 2004). A cointegrated relation between two series guaran-

tees the long-run equilibrium to be restored, once there occurs a deviation from the long-run

mean. In other words, once a cointegrated pair diverged, they are expected to return to their

long-run equilibrium at some point, meaning they converge again.

Using log-price data p1,t and p2,t , the spread is computed in two steps. First, we simply regress

one series on another

p1,t =µ1 +γ1p2,t +εt , (2)

p2,t =µ2 +γ2p1,t +ηt . (3)

In both equations, γ represents the cointegration factor of the time series. Due to a lower preci-

sion error, Vidyamurthy (2004) suggests to opt for estimating the equation containing the larger

γ. Therefore, depending on the size of γ1 and γ2 the spread is either

Spr eadt = εt = p1,t −µ1 −γ1p2,t , (4)

or

Spr eadt = ηt = p2,t −µ2 −γ2p1,t . (5)

If the spread is determined to be mean-reverting by an ADF or a Phillips-Perron test statistic,

both stocks are said to be cointegrated (assuming that both stocks are integrated of order 1), a

method known as the Engle and Granger (1987) test. The procedure during the formation and
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trading periods is rather similar to the distance approach. In the formation period, we create

the spread in the above described manner and estimate its standard deviation. In the trading

period, we again construct long-short positions when the spread deviates by kσ and close posi-

tions upon mean-reversion of the spread or at the end of the trading period.

3.3 Copula Approach

3.3.1 Introduction to Copulas

As outlined in the Introduction, Copulas are powerful tools to measure dependency structures

between random variables. Their main advantage lies in the separate estimation of marginal

and joint distributions. Nelsen (2006) provides a comprehensive introduction to copulas. Fol-

lowing this work, a function C : [0,1]n → [0,1] is an n-dimensional copula if each of the three

properties hold:

1. ∀u = (u1, ...,un) ∈ [0,1]n : min{u1, ...,un} = 0 ⇒C (u) = 0

2. C (1, ...,1,ui ,1, ...,1) = ui ∀ui ∈ [0,1]

3. VC ([a,b]) ≥ 0, where VC ([a,b]) represents the C-volume of the hyper-rectangle

[a,b] =∏n
i=1[ai ,bi ], ai ≤ bi ∀i .

In words, the first property states that if the marginal probability of any outcome is zero, the

joint probability of all outcome is zero as well. The second property says that if the marginal

probabilities of all but one outcome are known with probability one, the joint probability equals

the probability of the remaining uncertain outcome. Finally, the last property claims that the

C-volume of any n-dimensional interval is non-negative.

One of the most relevant theorems in the copula framework is ’Sklar’s theorem’ by Sklar (1959).

It states that copulas establish a functional relation between multivariate distribution functions

and their marginals. Let F (x1, ..., xn) denote any joint distribution function with continuous

marginals Fi (xi ), then there is a unique copula function satisfying the above described proper-

ties such that:

F (x1, ..., xn) =C (F1(x1), ...,Fn(xn)). (6)
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3.3.2 Estimation of Marginal Distributions

The estimation procedure of copulas consists of two separate steps: (i) the fitting of marginal

distributions and (ii) the estimation of the dependency structure between both random vari-

ables. While we cover several different dependency structures in the following subsection, we

first discuss our approach of fitting marginal distributions.

There are two different ways to estimate the marginal distribution of a random variable, a para-

metric and a non-parametric way. Since both approaches inherit certain advantages and disad-

vantages and might imply different trading outcomes, we employ both ways of fitting marginal

distributions in this thesis.

Fitting a non-parametric distribution has been extensively studied by Genest, Ghoudi and Rivest

(1995). This method comprises to estimate an empirical distribution of the data on hand. Let-

ting Xi =
(
Xi ,1, ..., Xi ,T

)′
be the i th data vector, the corresponding marginal distribution Fi (x) is

estimated by

F̂i (x) = 1

T +1

T∑
j=1

1{Xi , j≤x}, (7)

where 1{Xi , j≤x} is an indicator function that equals one if the statement in curly brackets is true

and zero otherwise and T denotes the size of vector Xi . Since the estimator F̂i (x) almost surely

converges to the true marginal distribution Fi (x) according to the law of large numbers, the

estimator is considered to be consistent (van der Vaart, 2000). While an empirical distribution

is able to capture specific higher moments of the data, it most likely lacks mass in the tails of the

distribution due to a finite number of available observations.

Fitting a parametric distribution is done by estimating the respective distribution parameters.

Contrary to the non-parametric way, this approach of fitting marginal distributions entails no

finite sample problems and thus better handles extreme observations. On the downside, this

concept results in two different issues. First, the estimated parameters are subject to estimation

error. Second, what parametric distribution does best fit the data? While the estimation error

decreases with larger samples, the latter issue remains. In this thesis, we opt for fitting marginal

Student-t distributions to the data due to its wide application on financial returns. The Student-

t distribution is characterized by its parameter, the degrees of freedom n. Taking the sample

estimates µ̂ and σ̂ of the return series, we first standardize the returns. Thereafter, we gain the
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degrees of freedom n by using maximum likelihood. Specifically, we opt for that n, which maxi-

mizes the log-likelihood function:

logL
(
n; z1, ..., zT

)= T∑
t=1

log

 1p
π (n −2)

Γ
(n+1

2

)
Γ

(n
2

) [
1+ z2

t

n −2

]− n+1
2

 , (8)

where Γ is the Gamma function.

3.3.3 Copulas applied in this thesis

The literature comprises a large amount of different copulas, each of which representing a cer-

tain dependency structure. Nelsen (2006) summarizes the most important copulas in the liter-

ature. In this thesis, we follow Liew and Wu (2013) and Xie et al. (2014) and focus on the most

frequently used copulas regarding financial assets: the Gaussian, the Student-t, the Gumbel,

the Clayton and the Frank copula. Notation-wise, let {X ,Y } be random variables with marginal

distribution {FX ,FY } and u = FX (r X ) and v = FY (r Y ). Both, u and v lie in the interval [0,1] and

represent the value of their respective marginal distribution at the realizations r X and r Y .

• Gaussian Copula:

The Gaussian copula is called an implicit copula, since it is implied by the multivariate

normal distribution. Meyer (2013) provides a comprehensive study about the bivariate

Gaussian copula applied in this thesis. Following this work, let

φ
(
x
)

:= 1p
2π

exp

(
−x2

2

)
, Φ

(
h
)

:=
∫ h

−∞
φ

(
x
)
d x

denote the density and distribution function of the standard normal distribution respec-

tively. Moreover, define

φ2
(
x, y ;ρ

)
:= 1

2π
√

1−ρ2
exp

(
−x2 −2ρx y + y2

2(1−ρ2)

)
, Φ2

(
h,k;ρ

)
:=

∫ h

−∞

∫ k

−∞
φ2

(
x, y ;ρ

)
d yd x

as the density and distribution function of the bivariate standard normal distribution,

in which ρ ∈ [−1,1] represents the correlation coefficient. Then, by Sklar’s theorem, the
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Gaussian copula reads as

C
(
u, v ;ρ

)=Φ2
(
Φ−1(u),Φ−1(v);ρ

)
, (9)

where Φ−1 is the inverse of the standard normal distribution function. From the copula

function in equation (9), we can derive the density by taking first order derivatives:

c
(
u, v ;ρ

)= ∂2

∂u∂v
C

(
u, v ;ρ

)= φ2
(
Φ−1(u),Φ−1(v);ρ

)
φ

(
Φ−1(u)

)
φ

(
Φ−1(v)

)
= 1√

1−ρ2
exp

(
2ρΦ−1(u)Φ−1(v)−ρ2

(
Φ−1(u)2 +Φ−1(v)2

)
2
(
1−ρ2

) )
. (10)

Finally, conditional bivariate copulas can be derived by taking partial derivatives of equa-

tion (9):

C
(
v |u)= ∂

∂u
C

(
u, v ;ρ

)=Φ(
Φ−1(v)−ρΦ−1(u)√

1−ρ2

)
, (11)

C
(
u|v)= ∂

∂v
C

(
u, v ;ρ

)=Φ(
Φ−1(u)−ρΦ−1(v)√

1−ρ2

)
. (12)

The only copula parameter ρ can be calibrated by

ρ = sin
(π

2
τ
)
, (13)

where τ is the rank correlation coefficient defined by Kendall (1948), also know as ’Kendall’s

tau’. We illustrate its computation in Section 3.4.3.

• Student-t Copula:

Similar to the Gaussian copula, the Student-t copula belongs to the class of implicit copu-

las. It differs from the Gaussian copula in the sense that it allows for joint fat tails. Further-

more, joint extreme events are allowed to happen with larger probability. Let the Student-t

density and distribution function be denoted by

fn
(
x
)

:= Γ
(n+1

2

)
p

nπΓ
(n

2

) (
1+ x2

n

)− n+1
2

, tn
(
h
)

:=
∫ h

−∞
fn

(
x
)
d x,
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where n ∈ (0,∞) represents the degree of freedom and Γ is the Gamma function. Fur-

thermore, the bivariate Student-t density and distribution with correlation coefficient ρ ∈
[−1,1] are denoted by

f2,n
(
x, y ;ρ

)
:= c

1p
ρ

(
1+ x2

nρ
+ y2

nρ

)− n+2
2

, t2,n
(
h,k;ρ

)
:=

∫ h

−∞

∫ k

−∞
f2,n

(
x, y ;ρ

)
d yd x,

in which the constant c in the bivariate density is computed according to c = Γ(n
2

)−1
Γ

(n+2
2

)
(nπ)−1.

Again applying Sklar’s theorem yields the bivariate Student-t copula

C
(
u, v ;ρ,n

)= t2,n
(
t−1

n (u), t−1
n (v)

)
. (14)

Taking first order derivatives of the bivariate Student-t copula and denotingψ= (
tn(u)−1, tn(v)−1

)′
gives the copula’s density (Jondeau, Poon, Rockinger, 2007):

c
(
u, v ;ρ,n

)= ∂2

∂u∂v
C

(
u, v ;ρ

)

= 1√(
1−ρ2

) Γ
(n+2

2

)
Γ

(n
2

)
(
Γ

(n+1
2

))2

[(
1+ ψ2

1
n

)(
1+ ψ2

2
n

)] n+1
2

[
1+ 1

n(1−ρ2)
(
ψ2

1 −2ρψ1ψ2 +ψ2
2

)] n+2
2

. (15)

The conditional bivariate Student-t copulas can be derived by taking partial derivatives of

equation (14):

C
(
v |u)= ∂

∂u
C

(
u, v ;ρ,n

)= t(n+1)

(√
n +1

n + (
t−1

n (u)
)2 × t−1

n (v)−ρt−1
n (u)√

1−ρ2

)
, (16)

C
(
u|v)= ∂

∂v
C

(
u, v ;ρ,n

)= t(n+1)

(√
n +1

n + (
t−1

n (v)
)2 × t−1

n (u)−ρt−1
n (v)√

1−ρ2

)
. (17)

Contrary to the Gaussian copula, which contains only the correlation coefficient ρ as pa-

rameter, the Student-t copula possesses an additional parameter, namely the degrees of

freedom n. While ρ can be calibrated using equation (13) as well, a more sophisticated

approach is needed to estimate the degree of freedom. Assuming the marginal distribu-

tions F1(x1) and F2(x2) are fitted, we estimate n by following two steps. First, we calibrate

ρ by means of equation (13). Thereafter, we numerically opt for that n, which maximises
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the log-likelihood function

logL(n,ρ;u1, ...,uT , v1, ..., vT ) =
T∑

t=1
logc(ut , vt ;ρ,n). (18)

• Gumbel Copula:

The Gumbel copula is an asymetric copula that belongs to a class called ’Archimedean’

copulas. Archimedean copulas are built upon any generator function ψ, satisfying ψ(1) =
0 and limu→0ψ(u) = ∞, that is strictly convex and monotonic decreasing. A bivariate

Archimedean copula can be written as

C
(
u, v

)=ψ−1(ψ(u)+ψ(v)
)
, (19)

with density

c
(
u, v

)=ψ−1
(2)

(
ψ(u)+ψ(v)

)
ψ

′
(u)ψ

′
(v). (20)

In the density above, ψ−1
(2) represents the inverse of the second derivative of the generator

function and ψ
′

the first derivative.

The generator function which yields the Gumbel copula is

ψ(u) =−(
lnu

)δ, (21)

where δ ≥ 1 is a parameter, which controls the degree of upper tail dependence λu =
2− 21/δ in the copula. Lower tail dependence is not present in the Gumbel copula and

therefore equals 0. Taking the inverse of the generator function and making use of equa-

tion (19) yields the bivariate distribution of the Gumbel copula (Venter, 2001):

C
(
u, v ;δ

)= exp

(
−

[
(− lnu)δ+ (− ln v)δ

] 1
δ

)
. (22)

The density of the Gumbel copula can be derived by utilizing equation (20):

c (u, v ;δ) =C (u, v ;δ)× (uv)−1 × A−2+2/δ× [(lnu) (ln v)]δ−1 ×
[

1+ (δ−1) A−1/δ
]

, (23)
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with A = (− lnu)δ+(− ln v)δ. Finally, the bivariate conditional copulas are computed using

partial derivatives again:

C
(
v |u)=C (u, v ;δ)×

[
(− lnu)δ+ (− ln v)δ

] 1−δ
δ × (− lnu)δ−1 × 1

u
, (24)

C
(
u|v)=C (u, v ;δ)×

[
(− lnu)δ+ (− ln v)δ

] 1−δ
δ × (− ln v)δ−1 × 1

v
. (25)

We calibrate the copula parameter δ by

δ= (
1−τ)−1, (26)

where τ is once again Kendall’s correlation coefficient.

• Clayton Copula:

Contrary to the Gumbel copula, which replicates upper tail dependence, the Clayton cop-

ula possesses lower tail dependence. It belongs to the class of Archimedean copulas as

well and is constructed by the following generator function

ψ
(
u

)=α−1(u−α−1
)
, (27)

with α ∈ (−1,∞) \ {0} as parameter and lower tail dependence degree λl = 2− 1
α . From this

generator function, the Clayton copula and its density follow directly (Venter, 2001):

C
(
u, v ;α

)= (
u−α+ v−α−1

)− 1
α , (28)

c
(
u, v ;α

)= (
α+1

)× (
u−α+ v−α−1

)−2− 1
α ×u−α−1v−α−1. (29)

Moreover, taking partial derivatives of the Copula yields the bivariate conditional copula

functions:

C
(
v |u)= u−(α+1) × (

u−α+ v−α−1
)− 1

α−1 , (30)

C
(
u|v)= v−(α+1) × (

u−α+ v−α−1
)− 1

α−1 . (31)
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Finally, calibrating the parameter α can be done using Kendall’s tau:

α= 2τ
(
1−τ)−1. (32)

• Frank Copula:

The Frank copula is yet another Archimedean copula. Contrary to the previous copulas,

the Frank copula is not considered to possess as heavy tails. Its generator function is

ψ
(
u

)=− ln

(
exp(−θu)−1

exp(−θ)−1

)
, (33)

with θ ∈ (−∞,∞) \ {0} being the parameter. From the generator function, it follows the

Frank copula and its density (Venter, 2001):

C
(
u, v ;θ

)=−θ−1 ln

[
1+

(
exp(−θu)−1

)(
exp(−θv)−1

)(
exp(−θ)−1

) ]
, (34)

c
(
u, v ;θ

)= −θ (
exp(−θ)−1

)(
exp(−θ (u + v))

)((
exp(−θu)−1

)(
exp(−θv)−1

)+ (
exp(−θ)−1

))2 . (35)

The bivariate conditional distributions are as follows:

C
(
v |u)= (

exp(−θu)−1
)(

exp(−θv)−1
)+ (

exp(−θv)−1
)(

exp(−θu)−1
)(

exp(−θv)−1
)+ (

exp(−θ)−1
) , (36)

C
(
u|v)= (

exp(−θu)−1
)(

exp(−θv)−1
)+ (

exp(−θu)−1
)(

exp(−θu)−1
)(

exp(−θv)−1
)+ (

exp(−θ)−1
) . (37)

Unfortunately, there exists no closed form solution for the parameter of interest θ. We can,

however, use a similar approach as in the degrees of freedom calibration for the Student-t

copula. That is, we numerically pick that θ, which maximises the log-likelihood function

logL(θ;u1, ...,uT , v1, ..., vT ) =
T∑

t=1
logc(ut , vt ;θ). (38)
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3.3.4 Copula Selection

Once all of the described copulas are estimated, the following step is to select the best fitting

copula. There are two common ways to determine the fit of a copula. On the one hand, standard

Goodness of Fit test-statistics such as the Kolmogorov-Smirnov (KS) and the Anderson-Darling

(AD) can be applied, both of which extended to copula application by Kole, Koedijk and Verbeek

(2007). On the other hand, information criteria can be used to select the best fitting copula.

Similar to Liew and Wu (2013) and Xie et al. (2014), we follow the latter method. Specifically, we

choose the copula yielding the lowest Akaike criterion (AIC) (Akaike, 1973):

AIC =−2l (θ)+2k, (39)

where l (θ) = ∑T
t=1 logc

(
ut , vt ;θ

)
denotes the optimized log-likelihood function of the copula

with parameter set θ and k represents the number of copula parameters.

3.3.5 Copula Algorithm

After the extensive and rather technical introduction to copulas in the previous subsections, we

are now able to describe the proposed algorithm by Xie et al. (2014). First, let us denote R X
t and

RY
t as the random variables of the high-frequency returns of stocks X and Y with realizations

r X
t and r Y

t . Furthermore, their marginal distribution functions are denoted by {FX ,FY } and u =
FX (r X

t ), v = FY (r Y
t ). Then, we can define mispricing indexes M I X |Y

t and M I Y |X
t between both

stocks as

M I X |Y
t

(
r X

t ,r Y
t

)= P
(
R X

t < r X
t |RY

t = r Y
t

)=C
(
u|v)

, (40)

M I Y |X
t

(
r X

t ,r Y
t

)= P
(
RY

t < r Y
t |R X

t = r X
t

)=C
(
v |u)

. (41)

These mispricing indexes ∈ [0,1] reflect the degree of mispricing between both stocks with re-

spect to only one observation, namely the returns of both stocks at time t . A value of 0.5 reflects

no mispricing, while a value larger than 0.5 indicates a relative overvaluation of the underlying

stock conditional on the other stock and vice versa.

To gain an overall impression of mispricing, Xie et al. (2014) suggest to sum up the mispriced
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values. This leads to two spread series, denoted by Spr eadX ,t and Spr eadY ,t . All in all, the basic

algorithm used in this thesis can be summarized in the following steps:

• Formation period:

1. First calculate the high-frequency returns r X
t and r Y

t and estimate their marginal dis-

tributions.

2. Fit all five copulas and pick the one with the lowest AIC.

3. Set Spr eadX ,0 = 0 and Spr eadY ,0 = 0

4. Compute Spr eadX ,t = Spr eadX ,t−1 +
(
M I X |Y

t −0.5
)

and Spr eadY ,t = Spr eadY ,t−1 +(
M I Y |X

t −0.5
)

5. Compute the standard deviations σX and σY of both spreads

• Trading period:

1. Set Spr eadX ,0 = 0 and Spr eadY ,0 = 0

2. Compute Spr eadX ,t = Spr eadX ,t−1 +
(
M I X |Y

t −0.5
)

and Spr eadY ,t = Spr eadY ,t−1 +(
M I Y |X

t −0.5
)

3. Construct long-short positions if one of the spread series deviates by k standard de-

viations

4. Close positions if the spread series returns to zero or at the end of the trading period.

5. If positions are closed, set both spread series equal to zero.

This algorithm is very similar, yet not entirely the same as applied by Xie et al. (2014). We mainly

extend their algorithm by introducing steps 3-5 in the formation period. Xie et al. (2014) do not

estimate the standard deviation of the spread in the formation period, but rather fix a threshold

level D in advance, at which trading signals occur. This technique appears to be too random.

Moreover, in order to guarantee a fair comparison of pairs trading frameworks, it is reasonable

to apply the same trading threshold methodology in all strategies. In this way, it is possible to

fairly determine which spread-construction is superior.
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3.4 Pairs selection criteria

All of the pairs trading frameworks can only function on suitable pairs. For this reason, the

literature has invented several metrics for pairs selection. In this thesis, we employ conventional

linear measures such as the Euclidean distance metric and the ADF test statistic of the spread

series as well as the two non-linear correlation measures Kendall’s tau and Spearman’s rho.

3.4.1 Euclidean Distance Metric

By far the most commonly applied selection criterion is based on the Euclidean distance be-

tween asset prices. It is conceived, that the smaller the Euclidean distance between two stocks,

the better they are for pairs trading. We compute the Euclidean distance between two cumula-

tive return series C RX ,t and C RY ,t as

ED =
√√√√ T∑

t=1

(
C RX ,t −C RY ,t

)2. (42)

3.4.2 ADF test statistic

Another pairs selection criterion is based on the degree of spread mean-reversion, implied by a

stock pair. Intuitively, testing for spread mean-reversion makes sense, since profit is only made

after the spread returns to zero, hence when it mean-reverts. We make use of the most common

test for mean-reversion, the Augmented Dickey-Fuller (ADF) test. The test is constructed by first

regressing

∆Spr eadt =α+γSpr eadt−1 +δ1∆Spr eadt−1 + ...+δp−1∆Spr eadt−p+1 +ε, (43)

where α is a constant and p is the lag order of the autoregressive process, which can be deter-

mined using information criteria. Under the null hypothesis of ’no mean-reversion’, the relevant

test statistic ADF is then computed by

ADF = γ̂

SE(γ̂)
, (44)
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where SE(γ̂) denotes the standard error of γ̂. Critical values are different from standard t-test

values. Pairs selection can be based on the magnitude of the ADF statistics. The pair resulting in

the lowest ADF statistic is linked to the spread containing the highest degree of mean-reversion.

3.4.3 Non-linear correlation measures

Both, the Euclidean distance metric and the ADF test statistic, are subject to certain draw-

downs. While the distance metric might not suit the primary objective of a profitable spread

series, the ADF test is as any test subject to estimation error. Moreover, constantly changing

spread dynamics might imply a decent in-sample, yet a poor out-of-sample performance of the

ADF criterion. Hence, we choose to test two alternative selection criteria, namely the correla-

tion measures Spearman’s ρ and Kendall’s τ. Both correlation measures are closely linked to the

copula concept and are thus expected to contain valuable information, especially with respect

to the copula spread. A high correlation coefficient suggests a close co-movement of a stock

pair.

• Spearman’s ρ:

Spearman’s ρ ∈ [−1,1] is computed by first ranking the return series of stocks X and Y ,

denoted by r k(r X
t ) and r k(r Y

t ). Defining the difference between the ranks of returns r X
t

and r Y
t as dt = r k(r X

t )− r k(r Y
t ) and their squared sum as D = ∑T

i=1 d 2
i , then Spearman’s ρ

is given by (Wayne, 1990)

ρ = 1− 6D

T
(
T 2 −1

) . (45)

• Kendall’s τ:

Kendall’s τ ∈ [−1,1] is based on the concept of concordance. Two pairs of observations

on random variables X and Y , denoted by (x1, y1) and (x2, y2) are said to be ’concordant’

if (x1 − x2) has the same sign as y1 − y2. Similarly, they are called ’discordant’ if (x1 − x2)

has the opposite sign as y1 − y2. By considering all possible observation-pairs in a sample

containing T observations, Kendall’s τ is computed by first counting all concordant and

discordant pairs, denoted by Nc and Nd respectively. Thereafter, Kendall’s τ is given by

(Kendall, 1948)

τ= Nc −Nd
1
2 T (T −1)

. (46)
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4 Application

In this Section, we empirically compare the three pairs trading frameworks by applying them on

real data. We commence, in Section 4.1, by introducing the platform in which the algorithms are

back-tested. Thereafter, in Section 4.2, we present the Data used for the application. In Section

4.3, we outline the implemented trading strategy. Consequently, in Section 4.4, we illustrate the

three pairs trading methodologies by applying them on an example pair. Finally, in Section 4.5,

we present and discuss the main results of the application.

4.1 The Platform - Quantconnect

In order to test the three pairs trading methodologies on high-frequency data, we make use of

an algorithmic open source backtesting platform called ’Quantconnect’. Quantconnect.com is a

free web platform that offers users the possibility to implement and backtest trading algorithms

by making use of Quantconnect’s data library as well as their servers. Regarding the data, Quant-

connect offers high-frequency data for all U.S. equities from January 1998 to the present, ranging

from ’tick’ to daily frequency. The data are being provided by their partner Quantquote, are free

of survivorship bias and are split and dividend adjusted. The data, together with their servers

enable retail investors to backtest computationally extensive algorithms in comparatively short

time, and most importantly without any cost. Since high-frequency data sources usually are

far from being cheap and easily accessible, this platform offers completely new possibilities for

research. In this thesis, we code all algorithms in the programming language C #.

4.2 Data - U.S. Goldmine Stocks

Since the aim of this thesis is to test the pairs trading frameworks on intraday data, i.e. high-

frequency, pairs pre-selection should be based on the degree of intraday co-movement of stocks

rather than on their long-term relation. Pairs, for instance, that take multiple days for converg-

ing back to their equilibrium are hardly profitable at intraday pairs-trading, yet perfectly suitable

for long-term pairs trading strategies.

Assets that most likely fulfill the criterion of intraday co-movement are stocks which are highly
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dependent on the same commodity prices. For this reason, we choose to apply the pairs trad-

ing strategies on U.S. goldmine stocks. Not surprisingly, goldmines severely depend on the

traded gold price, making them decent candidates for intraday pairs trading. According to

’Miningfeeds.com’, there are currently 16 goldmine stocks listed in the United States of Amer-

ica. However, we narrow the range of tradable goldmines down to 11 by excluding stocks that

went public during the sample period, which leaves us with 55 pair combinations. The sample

period ranges from January 1998 to April 2016 and the data comprise minute resolution.

Table 1 tabulates the remaining 11 goldmine stocks used in this thesis, including a short de-

scription of their business model and their stock symbols. While all of the firms have a gold

production in common, some differ in terms of additional mining operations. Hence, depend-

ing on their complete business model, their stock prices are expected to be either moderately or

very strongly correlated.

In order to gain a sense of the stock price development and co-movement of the goldmine stocks

throughout the sample period, we compute the daily cumulative return series of all stocks plus

the gold price and provide their plots, cross-correlations and Euclidean distance ranking. The

data are downloaded from Yahoo Finance.

Figure 1 plots all cumulative return series. From this plot, we can observe that apart from RGLD

and AEM, all stocks eventually underperform the gold price during the sample period. More-

over, some stock pairs seem to be strongly co-moving.

Table 2 summarizes the cross-correlations between all goldmine stocks and the gold price. Gen-

erally, it shows that most pairs are moderately to strongly correlated. However, interestingly,

there are two negative correlations present. HMY is negatively correlated with the gold price

and RGLD. A reason could be larger alternate mining operations of HMY.

Table 3 displays the ranking implied by computing the Euclidean distances between all pair

combinations. It seems that especially ABX, NEM and GFI closely move together. On the other

hand, VGZ is furthest apart from all other stocks.

All in all, we can conclude that there appear to be some suitable pairs for pairs trading among

the 11 pre-selected stocks. Whether pairs prove to be profitable on high-frequency after all, is

discussed in Section 4.5.
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Table 1: Description of utilized U.S. Goldmine stocks

Company Description Symbol

Barrick Gold Corp. Largest Market-cap. They produce Gold and Copper ABX

Agnico-Eagle Mines Produce gold, silver, zinc and copper AEM

Gold Fields Ltd. Produce and process gold and copper GFI

Goldcorp Inc. Produce gold, silver, lead, zinc and copper GG

Harmony Gold Produce gold, silver, copper and uranium HMY

Kinross Gold Corp. Produce gold, silver and copper KGC

McEwen Mining Inc. Produce gold, silver and copper MUX

Newmont Mining Corp. Produce gold, silver and copper NEM

Royal Gold Inc. Acquire and manage precious metals royalties RGLD

Richmont Mines Inc. Produce gold RIC

Vista Gold Corp. Produce mainly gold VGZ
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Figure 1: Cumulative return plots of all included U.S. goldmine stocks plus the gold price in
daily frequency from January 1998 to April 2016. Cumulative returns are computed using the
daily close prices of the stocks.
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Table 2: Cross-correlations of Goldmine Stocks and Gold price

ABX AEM GFI GG HMY KGC MUX NEM RGLD RIC VGZ

AEM 0.81

GFI 0.71 0.51

GG 0.87 0.92 0.60

HMY 0.55 0.31 0.89 0.39

KGC 0.88 0.87 0.70 0.82 0.55

MUX 0.72 0.71 0.73 0.77 0.47 0.65

NEM 0.88 0.71 0.87 0.81 0.70 0.81 0.74

RGLD 0.44 0.69 0.22 0.77 -0.02 0.41 0.53 0.46

RIC 0.63 0.42 0.56 0.60 0.47 0.43 0.48 0.71 0.46

VGZ 0.45 0.31 0.86 0.37 0.77 0.52 0.59 0.66 0.10 0.34

Gold 0.53 0.75 0.19 0.82 -0.06 0.46 0.57 0.48 0.95 0.50 0.03

Table 3: Ranking according to Euclidean Distance metric

ABX AEM GFI GG HMY KGC MUX NEM RGLD RIC

AEM 36

GFI 3 35

GG 33 7 32

HMY 21 31 18 24

KGC 9 26 8 27 15

MUX 14 30 13 28 19 10

NEM 1 38 2 25 22 12 17

RGLD 43 29 46 23 40 41 39 45

RIC 4 37 6 34 20 11 16 5 42

VGZ 54 48 52 44 47 51 49 55 50 53
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4.3 The Trading Strategy

The trading strategy applied by an investor is of upmost importance. It might decide whether

a framework is profitable or not. Regarding the trading strategy in this thesis, there are five

main decisions to take: (i) what data frequency to use; (ii) the length of formation and trading

periods; (iii) appropriate threshold values for k that trigger trades; (iv) when to close positions;

(v) whether and what stop-loss threshold to implement. All remaining decisions concern the

frameworks themselves.

Varying in one of these decisions might lead to different trading outcomes. In this thesis, how-

ever, the aim is not to find the optimal combination of input parameters, but rather to gain a

general impression of what pairs trading framework performs best.

We aim to trade by making the following decisions: (i) we use minutes as data frequency. (ii)

Since price dynamics and thus spread dynamics constantly change, we opt for multiple forma-

tion periods throughout the sample instead of relying on only one formation period in the be-

ginning. Specifically, the main idea is to trade intraday and use the time from market opening at

9:30 to 11:00 as formation period and the time from 11:00 until market closing at 16:00 as trading

period. In this way we rely on latest parameter estimations and avoid over-night risks. (iii) We

follow, among others, Gatev et. al (2006) and set k = 2. (iv) We follow the main stream of litera-

ture and exit trades once the spread reverts to zero or at the end of the trading period, i.e. when

the market closes. (v) We do not implement stop-loss positions since the risk of pair-divergence

is limited intraday.

Using the trading rules outlined above, we gain a stream of returns by selecting (in every forma-

tion period) the top stock pair suggested by a certain selection criterion. From these returns, we

compute several performance metrics, which make the trading frameworks comparable.

4.4 Illustration at an Example

In order to illustrate the functionality of the three algorithms and of the trading strategy de-

scribed in the previous subsection, we consider an example. Specifically, we analyze the perfor-

mance of the algorithms on June 14, 2007. This date serves well as it illustrates different trading

outcomes. By choosing k = 2, we can define del t a = ±2σ as the threshold to enter positions.
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For simplicity, we trade by selecting one stock pair according to the highest Spearman’s rho cri-

terion. During the formation period from 9:30 to 11:00, ABX and AEM are selected for trading,

with a Spearman’s rho of 0.44. Figure 2 plots the intraday cumulative returns of both stocks on

the chosen trading day, in minute resolution. It shows that there are phases of co-movement,

divergence and convergence present. In all instances, we trade by making use of 20.000$ capital

and by ignoring transaction costs.
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Figure 2: Cumulative intraday return plots of ABX and AEM on June 15, 2007.

4.4.1 Distance Approach

Figure 3 shows plots of the spread constructed by the distance approach, both in formation and

trading period. In the formation period, a trade would have been successful. In the trading

period, positions are entered, but could not be closed due to a non-reverting spread. Hence, the

trading rules applied and the positions are closed at the end of the trading day. Since the spread

happened to end between zero and del t a at the time of closing, a positive return of 0.15% is

generated. The trading summary of the distance approach is tabulated in Table 4.
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Figure 3: The Distance Spread in the Formation Period (a) and in the Trading Period (b). In (b),
the vertical lines represent times in which positions are opened (1) and closed (0).

Table 4: Distance approach - Trading summary

Position Symbol Price $ Quantity Time

Open ABX 25.359 -788 12:44

Open AEM 32.794 609 12:44

Close ABX 25.305 788 15:59

Close AEM 32.775 -609 15:59

Profit: 30.98$ Return: 0.15%

Notes: The invested capital is set to 20.000$.

4.4.2 Cointegration Approach

Figure 4 shows the plots of the resulting cointegration spread. The spread seems to be similar to

an inverted version of the distance spread. It is constructed by

Spr eadt = log AE Mt −1.15−0.73× log AB X t . (47)

Similarly to the distance approach, positions are entered, but could not be successfully closed.

In the end, the trades result in a small loss of −0.06%. The corresponding trading summary is

depicted in Table 5.
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Figure 4: The Cointegration Spread in the Formation Period (a) and in the Trading Period (b). In
(b), the vertical lines represent times in which positions are opened (1) and closed (0).

Table 5: Cointegration approach - Trading summary

Position Symbol Price $ Quantity Time

Open ABX 25.207 -793 11:26

Open AEM 32.666 612 11:26

Close ABX 25.305 793 15:59

Close AEM 32.775 -612 15:59

Profit: -11.01$ Return: -0.06%

Notes: The invested capital is set to 20.000$.

4.4.3 Copula Approach

Regarding the copula approach in this example, we estimate the marginal distributions of ABX

and AEM non-parametrically, meaning we compute their empirical distribution as outlined in

Section 3.3.2. Moreover, we do rely on a constant copula parameter. Figure 5 provides scatter

plots of the marginal distribution realizations during the formation period and the correspond-

ing theoretical copulas. In (a), it can be observed that both stocks are moderately correlated

with a slightly larger degree of upper than lower tail dependence. Comparing (a) to the theo-

retical copulas in (b)-(f), it becomes apparent that both, the Gumbel and the Clayton copula,

capture only one side of tail dependence, meaning they are not entirely able to capture the de-
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pendence structure between ABX and AEM. Among the remaining three copulas, it seems that

the Student-t copula is best able to capture the dependence structure of both variables, because

of its ability to replicate both, upper and lower tail dependence.

Table 6 displays the resulting AIC for every copula together with their parameter. Clearly, the

AIC is lowest for the Student-t copula, suggesting that it fits the data best.
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Figure 5: Scatter plots of the marginal distribution realizations of ABX and AEM during the For-
mation Period in (a) and the corresponding theoretical Copulas in (b)-(f).
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Table 6: AIC and Copula Parameter

Copula AIC Parameter

Student-t -48.99 ρ = 0.39; n = 4.51

Gumbel -22.87 δ= 1.33

Gaussian -20.55 ρ = 0.39

Frank -17.00 θ = 2.98

Clayton -14.52 α= 0.67

Figure 6 shows the plots of the Student-t copula spreads in formation and trading period. Con-

trary to the previous two approaches, the copula method is able to detect more trading oppor-

tunity. Twice, positions are opened according to Spr eadX and once by Spr eadY . Moreover, in

two instances the spread reverted back to zero, so that positions are successfully closed. All in

all, the copula algorithm generated a remarkable daily return of 0.72%. The trading summary

can be found in Table 7.
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Figure 6: The Student-t Copula Spreads in the Formation Period (a) and in the Trading Period
(b). In (b), the vertical lines represent times in which positions are opened (1) and closed (0).
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Table 7: Copula approach - Trading summary

Position Symbol Price $ Quantity Time Spread

Open AEM 32.839 -609 11:08 X

Open ABX 25.243 792 11:08 X

Close AEM 32.930 609 12:28 X

Close ABX 25.323 -792 12:28 X

Open AEM 32.930 -608 12:33 Y

Open ABX 25.296 792 12:33 Y

Close AEM 32.839 608 12:43 Y

Close ABX 25.368 -792 12:43 Y

Open AEM 32.748 615 13:34 X

Open ABX 25.314 -796 13:34 X

Close AEM 32.775 -615 15:59 X

Close ABX 25.305 796 15:59 X

Profit: 144.06$ Return: 0.72%

Notes: The invested capital is set to 20.000$.

4.5 Main Results

In this Section, we evaluate the performance of 5×4 = 20 pairs trading variants based on several

criteria. The variants consist of five different algorithms (Distance, Cointegration, constant Cop-

ula with empirical marginals, constant Copula with parametric marginals, time-varying Copula

with parametric marginals) tested on four pairs selection criteria (Euclidean Distance, ADF -

Statistic, Kendall’s τ, Spearman’s ρ).

The time-varying copula with parametric marginals differs compared to its constant counter-

part to the extent, that the copula parameter is re-calibrated every 30 minutes using an expand-

ing window. Contrary to a moving window of a fixed size, the expanding window approach

guarantees more data points and hence more reliable copula estimates the more time passes.

Unfortunately, an even higher updating frequency, i.e. every minute, seemed impossible due to

its immense computation time (it took around 24 hours to gain the return series for the time-

varying copula variant already).

We structure this Section as follows. At first, in Section 4.5.1, we present the excess return distri-

bution and the main trading statistics and of the algorithms. Thereafter, in Section 4.5.2, we an-
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alyze several risk-return adjusted characteristics and compute drawdown measures. In Section

4.5.3, we investigate differences over time. In Section 4.5.4, we perform a common risk factor

analysis. Finally, in Section 4.5.5, we check to what extent transaction costs affect profitability.

4.5.1 Excess Return Distribution and Trading Statistics

Table 8 depicts the daily return distribution in excess of the 1 month U.S. treasury bill rate re-

sulting from the return series of all applied pairs trading variants, excluding transaction costs.

Since there are trading days in the sample, in which the selected stock pair did not diverge by

more than two spread standard deviations and thus no trades occurred, we can either disre-

gard these trading days in our daily return computation or mark their returns as zero. While the

first method can be denoted as the return on ’Employed Capital’, the latter method is a more

conservative approach and can be described as return on ’Committed Capital’. As Gatev et al.

(2006) note, this method accounts for the opportunity cost of committing capital in spite of no

generated trades of the strategy.

The table shows that all strategies produce both statistically and economically significant aver-

age daily returns with Newey-West (NW) t-statistics all larger than 7.08. Not surprisingly, the

committed capital mean returns are lower than their corresponding employed capital returns,

yet not less statistically significant (due to the larger return series of committed capital). Gener-

ally, with up to 1.07%, we observe that the ADF criterion implies highest average daily returns,

followed by Kendall’s τ and roughly similar Euclidean distance and Spearman’s ρ criteria. In Ap-

pendix A, we illustrate the five most frequently selected pairs for either selection criterion. Re-

garding the different algorithms, we find that the distance approach generates highest average

returns, followed by the cointegration method. Among the copula variants, we find considerably

lower returns when fitting marginal distributions empirically than parametrically. Moreover, the

difference between constant and time-varying copula parameter seems to be negligible. In total,

it can be noted that higher average returns come with greater risk. For example, the standard

deviation of the distance approach variants is almost twice as large as the corresponding em-

pirical copula variants. Due to the -from investors favorable- positively skewed distributions,

the median returns are smaller than the average returns and even turn negative in the copula

with empirical marginals case (for committed capital). All variants posses high excess kurtosis,
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indicating non-normal return distributions. Looking at the minima and maxima of the return

series we obviously find no differences between committed and employed capital. Keeping in

mind that the table depicts daily returns, both minima and maxima appear to be large in their

magnitude and range from -27.5% to 30.6%. The fact, that the sample period covers more than

18 years including many high volatility states puts these magnitudes into perspective, however.

These magnitudes just show that even though pairs trading is a market-neutral strategy, it still

entails the idiosyncratic risks of both stock pair constituents. The percentage of daily excess

returns below zero indicates that all strategies produce more positive than negative daily re-

turns. Since the deduction of the interest rate implies negative returns for all ’zero’ returns on

committed capital, we find considerably more negative committed capital returns. Finally, the

empirical Value at Risk (VaR) and the Expected Shortfall (ES) at 1% reveal information about

the tail of the return distributions. Interestingly, the commonly used pairs selection criteria,

the Euclidean distance and the ADF statistic, both show considerably larger VaR and ES than

the nonlinear correlation measures. Especially in the cointegration approach, the differences

appear to be huge, with ES and VaR almost twice as large.

Table 9 summarizes the main trading statistics of the algorithms. Not surprisingly, we observe

that pairs selected according to the highest spread mean reversion imply the highest number

of transactions. The difference to the other selection criteria is most extreme in the empirical

copula case, where the ADF statistic generated over 60% more trades. Regarding the annualized

returns and the percentage of positive trades (winrate), a clear picture is drawn: Even though

all variants are highly profitable, the ADF statistic once again stands out and provides best an-

nualized returns and winrates (all above 60%). Furthermore, the distance approach is the best

algorithm performer. By far the most profitable variant is the ’distance approach - ADF statis-

tic’, yielding remarkable 1117% annually before transaction costs. Interestingly, the ADF statistic

variants yield highest annual return rates despite the fact that they possess the lowest average

negative returns and not the highest average positive returns among all selection criteria. This

fact suggests that the main return driver is the winrate of an algorithm. Several relevant statistics

in the pairs trading literature concern the so called round-trips (RT) of a strategy, i.e. successfully

mean-reverted spread series before market closing at 16:00 o’clock. In two of these statistics, the

(parametric marginal) copula methods are superior compared to the distance and the cointe-
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gration methods. For instance, remarkable 68% of all trades appeared to be RT trades for the

parametric copula - ADF variants, compared to 65% of the respective distance and cointegra-

tion variants. Moreover, in terms of average RT trades per day, both copula methods outperform

in three out of four pairs selection criteria, generating up to 1.81 RT trades per day on average. In

that statistic, the Spearman’s ρ criterion clearly falls behind with only around 1 RT per day, sug-

gesting little mean-reverting spread properties. So while it seems that copulas generate more

frequent RT trades than the distance and cointegration methods, they achieve lower average RT

trade returns on the downside. That might be due to the surprising fact that up to 15% of the

copula RT trades are negative, compared to none negative RT trade in the distance approach and

less than 1% negative RT trades in the cointegration approach. While the distance approach for-

bids negative RT trades by definition, they might occur in the other two algorithms due to falsely

estimated parameter. In other words, at times, the estimation error of the parameter might have

been too large to adequately specify the spread, which in turn led to false transaction signals

and thus negative RT trades (see Appendix B for illustration). Especially the estimation of the

empirical marginals turns out to be not accurate enough. It implies around 3% more negative

RT trades than a parametric marginal estimation. Obviously, the 90 data points during the for-

mation period do not suffice to specify a marginal distribution. Interestingly, the time-varying

copula produces slightly more positive RT trades than the constant copula, which confirms that

estimation errors decrease with an increasing amount of observations. Finally, the last column

of the table depicts the average holding time until closing of positions, which matter with re-

spect to borrowing costs for short selling. On average, an investor would hold a position for only

around 86 to 114 minutes, again with shortest holding times in the ADF statistic case.

Compared to the existing pairs trading literature we find similar results as Rad et al. (2015).

They also find the distance and cointegration approaches considerably more profitable than the

copula approach. On the other hand, our results contradict the findings of Xie et al. (2014), who

conclude the copula approach to be superior. Only with respect to more generated RT trades of

the copula approach, our findings are consistent with Xie et al. (2014).
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Table 8: Daily Excess return Distribution

Average t-stat Median Std. Skew. Kurt. Min. Max. Ret. < 0 VaR ES
(%) (NW) (%) (%) (%) (%) (%) (1%) (1%)

COMMITTED CAPITAL

(A) Distance Approach
Dist 0.72 11.44 0.41 2.36 2.26 18.53 -17.8 26.9 35.8 -4.44 -6.94
ADF 1.04 16.12 0.66 2.67 2.01 12.59 -16.3 26.9 33.2 -4.73 -6.70
τ 0.71 9.13 0.39 2.07 2.42 30.94 -27.5 26.9 35.4 -3.17 -5.16
ρ 0.59 7.34 0.13 2.08 3.48 28.33 -16.2 26.9 39.7 -2.98 -5.29

(B) Cointegration Approach
Dist 0.54 12.47 0.40 2.48 0.75 26.32 -28.8 32.1 38.0 -6.24 -10.58
ADF 0.85 16.48 0.55 2.70 1.57 15.69 -19.2 32.0 36.3 -5.61 -8.75
τ 0.79 10.78 0.51 2.18 2.58 21.89 -19.2 26.7 33.3 -3.44 -5.55
ρ 0.53 9.09 0.27 1.97 2.35 16.52 -12.9 20.4 39.0 -3.66 -5.69

(C) Copula Approach - Constant with Empirical Marginals
Dist 0.13 7.44 -0.01 1.25 2.12 47.29 -11.1 24.5 53.5 -3.35 -5.31
ADF 0.42 12.40 0.27 2.22 1.59 20.32 -16.1 28.5 42.4 -5.33 -7.98
τ 0.15 9.39 -0.01 1.07 0.58 12.00 -10.5 10.3 53.9 -2.59 -3.93
ρ 0.14 8.08 -0.01 1.20 0.72 42.70 -20.0 17.6 53.3 -2.87 -4.50

(D) Copula Approach - Constant with Parametric Marginals
Dist 0.31 9.94 0.21 1.75 0.74 19.12 -17.7 20.6 42.3 -4.47 -7.16
ADF 0.66 16.30 0.47 2.35 1.16 10.95 -14.5 26.3 37.6 -5.09 -7.57
τ 0.40 11.26 0.24 1.60 1.50 20.27 -13.9 23.1 40.5 -3.26 -5.04
ρ 0.29 9.48 0.12 1.55 3.14 45.83 -12.2 30.6 44.6 -3.35 -4.90

E) Copula Approach - Time-varying with Parametric Marginals
Dist 0.32 8.92 0.20 1.82 1.58 29.58 -17.7 28.5 42.6 -4.38 -7.17
ADF 0.63 15.98 0.46 2.29 1.25 11.83 -14.5 27.0 38.3 -4.94 -7.11
τ 0.34 11.46 0.21 1.49 0.18 24.92 -22.9 17.0 41.7 -3.16 -5.15
ρ 0.29 9.83 0.12 1.51 3.06 48.25 -12.2 30.6 44.5 -3.21 -4.81

EMPLOYED CAPITAL

(A) Distance Approach
Dist 0.76 10.62 0.44 2.51 2.64 21.96 -17.8 26.9 34.5 -4.63 -7.08
ADF 1.07 15.42 0.71 2.71 1.96 12.15 -16.3 26.9 31.6 -4.79 -6.74
τ 0.78 8.57 0.49 2.14 2.33 28.89 -27.5 26.8 32.2 -3.26 -5.14
ρ 0.70 7.28 0.38 2.27 3.20 24.13 -16.2 26.8 35.0 -3.51 -5.64

(B) Cointegration Approach
Dist 0.54 11.74 0.42 2.52 0.69 26.59 -16.4 32.1 37.2 -6.26 -10.80
ADF 0.89 15.48 0.62 2.74 1.53 15.13 -19.2 32.0 34.4 -5.65 -8.65
τ 0.80 10.28 0.53 2.18 2.59 21.87 -19.2 26.7 32.4 -3.43 -5.40
ρ 0.56 9.31 0.34 2.01 2.24 15.53 -12.9 20.4 37.3 -3.74 -5.69

(C) Copula Approach - Constant with Empirical Marginals
Dist 0.17 8.13 0.16 1.44 1.75 34.91 -11.1 24.5 42.3 -3.70 -5.40
ADF 0.44 12.23 0.31 2.26 1.66 20.39 -16.1 28.5 40.7 -5.34 -7.94
τ 0.20 7.67 0.16 1.22 0.38 8.45 -10.5 10.3 42.0 -2.93 -3.96
ρ 0.18 7.08 0.17 1.32 1.35 23.18 -12.1 17.6 42.0 -3.14 -4.35

(D) Copula Approach - Constant with Parametric Marginals
Dist 0.33 8.61 0.29 1.79 0.69 18.04 -17.7 20.6 39.3 -4.55 -7.16
ADF 0.67 15.22 0.49 2.35 1.16 10.86 -14.5 26.3 37.3 -5.09 -7.46
τ 0.41 10.33 0.27 1.62 1.46 19.59 -13.9 23.1 39.0 -3.29 -5.04
ρ 0.32 7.67 0.22 1.61 2.93 42.40 -12.2 30.6 39.9 -3.40 -4.90

E) Copula Approach - Time-varying with Parametric Marginals
Dist 0.34 8.46 0.28 1.87 1.51 27.87 -17.7 28.5 39.7 -4.52 -7.29
ADF 0.64 15.88 0.48 2.30 1.24 11.72 -14.5 27.0 37.9 -4.96 -7.11
τ 0.36 9.36 0.27 1.53 0.14 23.64 -22.9 17.0 39.1 -3.17 -5.24
ρ 0.32 8.19 0.22 1.58 2.89 44.17 -12.2 30.6 39.9 -3.29 -4.92

Notes: This table depicts the daily excess return distributions of all pairs trading variants for both com-
mitted and employed capital return streams, before transaction costs. The committed capital returns
extend employed capital returns by the trading days in which a strategy did not generate trades. These
trading days are captured with ’zero’ return. The t-statistics are computed with Newey-West (NW) stan-
dard errors. The number of lags included are determined subject to the lowest AIC.
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Table 9: Summary of Trading Statistics

Number of Annualized Winrate Average Average % of Average No. Average RT % of Average holding
Trades Ret. (%) (%) (Ret>0) (%) (Ret<0) (%) RT Trades of RT per day Ret. (%) RT (Ret<0) Time (min)

A) Distance Approach
Dist 38280 512 64 0.73 -0.87 63 1.35 0.75 0.00 94
ADF 39052 1117 66 0.84 -0.93 65 1.43 0.99 0.00 89
τ 33012 471 64 0.79 -0.85 61 1.19 0.86 0.00 96
ρ 25038 318 62 0.89 -0.89 53 0.86 1.01 0.00 109

B) Cointegration Approach
Dist 37842 256 62 0.74 -0.88 61 1.28 0.64 0.12 106
ADF 39834 668 65 0.85 -0.99 65 1.46 0.76 0.76 92
τ 41046 580 64 0.76 -0.85 65 1.48 0.72 0.44 93
ρ 31029 262 60 0.86 -0.91 57 1.01 0.73 0.84 114

C) Copula Approach - Constant with Empirical Marginals
Dist 25440 38 56 0.71 -0.79 55 1.02 0.35 15.3 106
ADF 41846 177 60 0.76 -0.89 63 1.50 0.45 15.4 96
τ 25024 46 55 0.75 -0.80 54 0.96 0.34 15.1 112
ρ 26024 43 56 0.72 -0.80 53 0.97 0.35 14.7 113

D) Copula Approach - Constant with Parametric Marginals
Dist 38516 112 59 0.68 -0.79 63 1.39 0.37 13.2 95
ADF 48072 390 63 0.74 -0.87 68 1.79 0.54 12.6 87
τ 36720 166 59 0.79 -0.86 58 1.20 0.49 12.4 110
ρ 30876 103 58 0.75 -0.82 55 1.01 0.46 11.7 113

E) Copula Approach - Time-varying with Parametric Marginals
Dist 37644 116 59 0.69 -0.78 63 1.36 0.39 12.7 94
ADF 48490 357 63 0.73 -0.87 68 1.81 0.51 11.9 86
τ 33472 133 58 0.77 -0.83 57 1.10 0.45 12.0 107
ρ 31118 106 58 0.76 -0.81 56 1.03 0.45 10.7 111

Notes: This table depicts the main trading statistics of all pairs trading variants. Round-trip trades, i.e. successfully closed trades before market
closing at 16:00 o’clock are abbreviated with ’RT’.
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4.5.2 Risk-adjusted Return Characteristics and Drawdown Measures

In table 10 we present the main annualized risk-adjusted performance characteristics as well

as several drawdown measures of the algorithms. Their computation is illustrated in Appendix

C. We focus on the committed capital return streams. Starting with the most commonly used

performance metric -the Sharpe ratio- we can carefully conclude the following ranking among

the selection criteria: (1) ADF, (2) Kendall’s τ, (3) Spearman’s ρ, (4) Euclidean Distance. Only

the cointegration approach slightly distorts this ranking, with Kendall’s τ as best performing

criterion. Similarly, we can rank the algorithms as: (1) Distance approach, (2) Cointegration

approach, (3) Constant / Time-varying Copula with parametric marginals, (4) Constant Copula

with empirical marginals. All in all, most variants possess ’excellent’ Sharpe ratios according

to Maverick (2015), with annual Sharpe ratios above 3. In contrast to the Sharpe ratio, which

relates annual excess return to total risk as standard deviation, Sortino ratio, Omega and Up-

side potential are classified as ’lower partial moment’ characteristics, meaning they measure

risk as downside deviation. This is a valuable feature as the Sharpe ratio potentially underesti-

mates risk (Eling, 2008). The Sortino ratio relates annual excess return to downside deviation,

Omega forms a ratio of positive to negative returns and Upside potential relates positive returns

to downside deviation. All these measures show impressive risk-return ratios for investors, con-

firming the above ’ranking’ of selection criteria and pairs trading methodologies.

The second pillar in table 10 depicts drawdown measures. These measures are connected to the

equity curves resulting from the algorithms rather than to their returns. The tabulated maxi-

mum drawdowns appear relatively large, ranging from 16% to 34%. However, keeping in mind

the rather extreme minima of the pairs trading return distributions, these values are put into

perspective. Subtracting the minima from the maximum drawdowns suggests that the portfo-

lios do not loose considerably more before reaching new highs. In total, Spearman’s ρ, poorly

ranked in terms of risk-return characteristics, seems to be safest regarding maximum draw-

downs. The Calmar ratio relates the annualized returns to the maximum drawdowns. Clearly,

all strategies tend to recover easily within one year after a maximum drawdown with Calmar ra-

tios well above 1. The remaining tabulated drawdown measures are the Sterling ratio, the Burke

ratio, the Ulcer index and the Martin Ratio. The Sterling ratio relates annual excess return to the
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average yearly maximum drawdown. The Burke ratio is defined as annual excess return to the

square root of sum of the squared N largest drawdowns 2. The Ulcer Index takes both the degree

as well as the time of drawdowns into account. Finally, the Martin ratio divides the annualized

excess return by the Ulcer Index. All of these ratios reveal the clear underperformance of the

empirical copula framework. Furthermore, mainly due to their impressive annualized returns,

the Distance approach can be viewed as best risk-rewarded.

The fact that Calmar, Sterling and Burke all relate drawdowns to annual excess return makes

it hard to examine the standalone drawdown properties of a strategy, though. The large dif-

ferences in annual excess returns between the variants considerably cloud differences in draw-

down statistics. Therefore, we compute the five largest drawdowns for either variant and depict

them in form of bar charts in figure 7. Generally, we observe that the non-linear correlation mea-

sures induce smaller drawdowns than the conventional selection criteria, a further indication of

their lower risk profile (next to smaller VaR, ES and standard deviation of returns). Furthermore,

the distance approach seems to generate smaller drawdowns than the other frameworks, con-

firming its overall superiority.

In order to determine statistically significant differences in the reported Sharpe ratios of table

10, we additionally perform the by Memmel (2003) extended version of the test of Jobson and

Korkie (1981). The technical details of this test can be found in Appendix D. Table 11 tabulates

the z-scores resulting from every Sharpe ratio comparison. Positive z−scores indicate higher

Sharpe ratios in favor of the vertically reported pairs trading variants and negative values in favor

of the horizontally reported ones. Significance can be determined at the usual thresholds, i.e.

±1.96 for 95% confidence and ±2.575 for 99% confidence. We find that the best performing vari-

ant ’Distance approach - ADF statistic’ generates a significantly higher Sharpe ratio compared

to all variants except ’Cointegration approach - Kendall’s τ’. Furthermore, in all but ’Constant

parametric Copula - Kendall’s τ’ and ’Cointegration approach - Kendall’s τ’, the ADF statistic

proves to generate significantly higher Sharpe ratios than the other pairs selection criteria. Fi-

nally, comparing the Sharpe ratios of the constant parametric copula to the time-varying coun-

terpart, we find no significant differences between same pairs selection criteria, questioning the

sense of sacrificing computation time in favor of a time-varying copula model.

2In our computation we used N = 10.
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Table 10: Annualized Risk-adjusted Performance

Risk-Return characteristic Drawdown Measures

Sharpe Sortino Omega Upside Max Calmar Sterling Burke Ulcer Martin
Ratio Ratio Pot. Drawd. (%) Ratio Ratio Ratio Index Ratio

(A) Distance Approach
Dist 4.88 11.89 50.13 17.40 23.83 21.48 53.04 11.67 3.10 1.65
ADF 6.28 16.24 60.01 22.08 21.40 52.18 100.91 23.60 2.55 4.37
τ 5.78 14.69 59.52 20.04 27.51 17.14 56.00 11.55 2.18 2.16
ρ 4.91 13.62 54.38 19.24 19.15 16.60 39.38 8.73 2.15 1.48

(B) Cointegration Approach
Dist 3.55 6.00 34.99 10.99 34.00 7.54 21.19 4.22 5.51 0.47
ADF 5.14 11.00 46.57 16.65 29.31 22.78 52.34 12.06 4.51 1.48
τ 5.85 15.30 57.98 21.05 21.09 27.49 73.90 16.35 2.08 2.79
ρ 4.48 10.40 43.45 16.32 17.07 15.38 28.88 6.43 3.45 0.76

(C) Copula Approach - Constant with Empirical Marginals
Dist 1.95 3.26 23.96 9.67 30.99 1.22 3.41 0.70 5.46 0.07
ADF 3.10 5.75 30.20 12.13 30.21 5.86 12.53 2.93 5.78 0.31
τ 2.65 4.50 26.15 11.45 22.63 2.05 4.54 1.06 4.40 0.11
ρ 2.24 3.89 25.26 10.48 23.59 1.82 4.04 0.87 5.35 0.08

(D) Copula Approach - Constant with Parametric Marginals
Dist 2.94 5.03 29.54 10.88 23.31 4.83 9.73 2.13 4.75 0.24
ADF 4.51 8.99 38.68 15.25 23.72 16.43 33.23 7.97 3.67 1.06
τ 4.06 8.03 35.87 14.41 19.59 8.47 15.29 3.61 3.77 0.44
ρ 3.17 6.38 31.62 12.82 20.95 4.94 10.39 2.28 4.41 0.23

(E) Copula Approach - Time-varying with Parametric Marginals
Dist 2.94 5.18 29.97 11.01 23.52 4.94 10.37 2.26 4.43 0.26
ADF 4.45 8.77 37.57 15.18 25.71 13.87 27.86 6.67 3.79 0.94
τ 3.86 6.84 33.92 12.85 22.90 5.81 13.05 3.10 3.54 0.38
ρ 3.31 6.53 32.10 12.93 16.56 6.37 11.75 2.78 3.44 0.31

Notes: This table displays annualized risk-return performance metrics, as well as drawdown measures
for every pairs trading variant. Formulae of their computation are attached to Appendix C.

Other high-frequency pairs trading applications on equities report high Sharpe ratios before

transaction costs as well. Miao (2014) proposes a cointegration-based strategy which yields an

annual Sharpe ratio of 9.25, applied on Gas and Oil stocks at 15-minute frequency. Moreover,

Dunis et al. (2010) test cointegration variants on the constituents of the Eurostoxx 50 index, at

5-minute to daily frequencies. On their five months sample, they report Information ratios3(IR)

of up to 12.05 for a ’ADF-like’ cointegration variant at 5 minute frequency. Interestingly, the

reported high-frequency IRs are considerably higher than the daily IRs, confirming the findings

of Aldridge (2009).

3They define the Information ratio as the annual return over annual standard deviation.
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Figure 7: This Figure depicts the five largest Maximum Drawdowns of either pairs trading vari-
ant.
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Table 11: Jobson-Korkie Sharpe Ratio Comparison Test Results

Distance Cointegration Cop. Emp. Cop. Par. Cop. T-Var.

Dist ADF τ ρ Dist ADF τ ρ Dist ADF τ ρ Dist ADF τ ρ Dist ADF τ

D
is

ta
n

ce ADF 5.54
τ 2.14 -2.17
ρ -1.06 -5.27 -3.40

C
o

in
t.

Dist -5.04 -9.11 -6.43 -3.32
ADF 0.55 -3.68 -1.52 1.58 4.88
τ 2.97 -1.28 1.36 4.18 7.37 2.48
ρ -1.65 -5.78 -3.83 -0.81 2.74 -2.18 -5.00

C
o

p.
E

m
p. Dist -10.26 -14.05 -11.63 -8.49 -5.55 -10.00 -12.49 -7.98

ADF -5.42 -9.48 -7.38 -4.51 -1.24 -5.97 -8.42 -3.99 4.24
τ -7.61 -11.60 -10.08 -6.54 -3.45 -8.16 -11.01 -5.99 2.00 -2.32
ρ -8.66 -12.74 -10.78 -8.25 -4.61 -9.32 -11.72 -7.72 0.78 -3.72 -1.24

C
o

p.
Pa

r. Dist -6.76 -10.66 -8.17 -5.03 -1.94 -6.43 -9.24 -4.51 5.07 -0.55 1.73 2.91
ADF -1.12 -5.37 -3.17 -0.11 3.15 -1.70 -4.05 0.47 8.51 4.53 6.62 7.64 5.07
τ -2.60 -6.67 -5.41 -1.60 1.68 -3.10 -6.35 -0.99 7.09 2.92 6.03 6.44 3.65 -1.47
ρ -5.48 -9.63 -7.60 -4.97 -1.22 -6.03 -8.64 -4.20 4.21 0.02 2.34 4.70 0.59 -4.37 -3.10

C
o

p.
T-

V
ar

. Dist -7.20 -11.10 -8.34 -5.17 -2.09 -6.59 -9.37 -4.61 4.76 -0.69 1.59 2.77 -0.30 -5.21 -3.75 -0.74
ADF -1.37 -5.52 -3.40 -0.34 2.91 -1.91 -4.28 0.24 8.27 4.32 6.38 7.39 4.80 -0.62 1.23 4.14 4.96
τ -3.44 -7.49 -6.27 -2.41 0.82 -3.90 -7.31 -1.83 6.31 2.04 5.80 5.61 2.79 -2.39 -1.46 2.18 2.94 -2.15
ρ -5.25 -9.36 -7.32 -4.71 -0.97 -5.73 -8.38 -3.96 4.46 0.28 2.58 5.08 0.84 -4.08 -2.82 0.73 1.01 -3.88 -1.92

Notes: This table reports the test results of the by Memmel (2003) extended Jobson and Korkie (1981) Sharpe ratio test. This test determines
whether two Sharpe ratios are significantly different from each other. Positive reported values indicate higher Sharpe ratios in favor of the ver-
tically reported pairs trading variants and negative values in favor of the horizontally reported ones. All reported values are z-scores. At 95%
significant z-scores are printed bold. Technical details of this test can be found in Appendix D.
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4.5.3 Sub-period Analysis

Due to the long sample horizon of over 18 years, a sub-period analysis is inevitable to illustrate

possible differences over time. Figure 8 shows how an investment would have evolved by fol-

lowing either of the pairs trading variants. It is important to note, that the figure depicts the

log of cumulative returns. Due to the exponential growth of cumulative returns, other than

plotting logs would have resulted in an exponential curve, which does not serve the purpose

of illustrating time differences. Generally, we find that all pairs trading variants show steady

growth over the whole sample period, without major drawdowns. Moreover, it seems that most

log-cumulative return curves are sightly concave, which is a sign of decreasing profitability. Es-

pecially from around 2002 onwards, the curves appear to be less steep. This is in line with the

findings of Do and Faff (2010), who find a decline in pairs trading profitability as well. All in

all, this figure confirms what we have found before: The distance approach is on top; Empir-

ical marginals are no substitute for parametric marginals; there is no considerable difference

between constant and time-varying copula approach.

A further sub-period analysis is conducted in Figure 9. This figures depicts bar charts of an-

nualized Sharpe ratios in two year intervals. In all subfigures (a) - (d), we can observe positive

2-year Sharpe ratios, which is evidence for no negative average returns in these periods. In total,

Sharpe ratios are higher in the beginning of the sample horizon, which is in line with our ob-

servation of steep cumulative return curves during that time. Particularly the Sharpe ratios be-

longing to the selection criteria Kendall’s τ (c) and Spearman’s ρ (d) seem to steadily decline. On

the other hand, the ADF statistic (b) ended up with higher Sharpe ratios, after a weaker period

from around 2006 - 2012. Comparing all algorithms, we find that the Sharpe ratio differences

between the distance/ cointegration and the copula approaches become smaller after time. In

some years a copula approach manages to even outperform both (ADF- statistic in 2014), or at

least the cointegration approach (Euclidean distance in 2002; ADF in 2006).

In Appendix E, we additionally provide similar bar charts as in Figure 9, depicting the evolution

of daily average returns. Observing these bar charts confirms both a drop in pairs trading prof-

itability as well as diminishing differences between the copula and the distance/ cointegration

methods. Furthermore, it suggests that the deterioration in Sharpe ratios can be attributed to a
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decline in average returns rather than to an increase in their volatility.

All in all, it is hard to find reasons for the sharp fall in pairs trading profitability and the overall

time-variation of Sharpe ratios. Before 2002, impressive gains could have been made by apply-

ing one of these intraday pairs trading strategies, an indication for an inefficient market. After

2002, more and more traders seemed to become aware of these trading opportunities, which

might have led to an exploitation of the existing ’arbitrage’. Additionally, the advance of elec-

tronic and high-frequency trading might have contributed to ever decreasing profits as well.

An overall variation of Sharpe ratios could be explained by changing dependency structures or

different volatility states among the goldmine stocks.

0

10

20

30

40

50

98 00 02 04 06 08 10 12 14

Distance

Cointegration

Empirical Copula

Parametric Copula

Time-varying Copula

C
u
m

u
la

ti
v
e
 R

e
tu

rn
 (

e
^x

)

Euclidean Distance

Time

-10

0

10

20

30

40

50

98 00 02 04 06 08 10 12 14

Distance

Cointegration

Empirical Copula

Parametric Copula

Time-varying Copula

ADF - Statistic

C
u
m

u
la

ti
v
e
 R

e
tu

rn
 (

e
^x

)

Time

0

10

20

30

40

50

98 00 02 04 06 08 10 12 14

Distance

Cointegration

Empirical Copula

Parametric Copula

Time-varying Copula

Kendall’s Tau

C
u
m

u
la

ti
v
e
 R

e
tu

rn
 (

e
^x

)

Time

0

10

20

30

40

50

98 00 02 04 06 08 10 12 14

Distance

Cointegration

Empirical Copula

Parametric Copula

Time-varying Copula

Spearman’s Rho

C
u
m

u
la

ti
v
e
 R

e
tu

rn
 (

e
^x

)

Time

Figure 8: Plots of the Log - Cumulative Returns. Taking the exp of the Y - Axis yields real Portfolio
Cumulative Returns.
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Figure 9: Annualized Sharpe Ratio Bar Charts over two-year horizons.
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4.5.4 Exposure to common Risk Factors

Another important feature of trading strategy performance-analysis is to reveal the strategies’

exposure to common risk factors. We do this by regressing both, the daily and monthly commit-

ted capital return streams, on the so called Carhart (1997) four-factor model. This model extends

the famous Fama and French (1993) three-factor model (Market excess return, Size (Small mi-

nus Big), Value (High minus Low)) by the momentum factor of Jegadeesh and Titman (1993) 4.

Table 12 summarizes the resulting regression coefficients, their Newey-West (NW) t-statistics as

well as the corresponding regression R2.

The upper half of the table depicts the daily regression outcome. Generally, we can observe very

low R2 values of maximum 0.007 in all instances, suggesting that the chosen risk factors are not

able to explain the large variance in daily pairs trading returns. Furthermore, all strategy variants

generate statistically and economically positive alphas with t-statistics all above 6.89. Observing

the factor loadings, we find most of the pairs trading variants to be market neutral, a typical pairs

trading characteristic due to its long-short strategy. Surprisingly, some variants are significantly

exposed to the size factor, even though none of the goldmine stocks can be categorized as ’small’.

This paradox was also observed in the studies by Chan, Chen and Lakonishok (2002) concerning

large cap mutual funds and more recently by Rad et al. (2015) and Krauss and Stübinger (2015)

with respect to pairs trading. Regarding the value factor, we only find the Euclidean distance

criterion of the copula approaches slightly exposed and apart from one instance no exposure to

the momentum factor of any variant.

The monthly returns show less variation and thus result in higher regression R2. Still, all al-

phas are economically and statistically significant. Compared to the daily regression, we ob-

serve more variants to be dependent on the market factor. On the other hand, none variant is

exposed to the size factor anymore. Counting the significant dependencies of both daily and

monthly regressions determines the Euclidean distance criterion to be mostly exposed to sys-

tematic risk (with 9 significant exposures) compared to Spearman’s ρ (3), Kendall’s τ (2) and ADF

(2).

4We downloaded all factors from the data library of Kenneth French’s website.
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Table 12: Exposure to common Risk Factors

Intercept Market Exc. Return Small minus Big High minus Low Momentum

Alpha t-stat Factor t-stat Factor t-stat Factor t-stat Factor t-stat R2

DAILY DEPENDENCE

A) Distance Approach
Dist 0.723 11.510 -0.059 -2.259 0.191 2.440 0.044 0.564 -0.002 -0.039 0.003
ADF 1.048 15.533 -0.073 -1.735 0.072 0.822 -0.018 -0.174 -0.029 -0.426 0.001
τ 0.722 8.990 -0.050 -1.344 -0.006 -0.103 0.055 0.802 0.026 0.570 0.002
ρ 0.596 7.440 -0.005 -0.177 -0.009 -0.090 0.098 1.290 -0.005 -0.125 0.001

B) Cointegration Approach
Dist 0.543 13.790 -0.023 -0.659 0.187 2.019 -0.020 -0.221 0.054 1.045 0.003
ADF 0.858 16.550 -0.015 -0.515 -0.006 -0.094 -0.007 -0.089 0.033 0.614 0.000
τ 0.798 10.790 -0.014 -0.280 -0.032 -0.516 0.095 1.397 0.053 1.350 0.001
ρ 0.540 9.016 -0.033 -1.030 -0.004 -0.084 0.072 1.138 -0.025 -0.633 0.001

C) Copula Approach - Constant with Empirical Marginals
Dist 0.136 7.597 0.019 1.069 -0.037 -1.053 -0.077 -2.260 0.043 2.300 0.004
ADF 0.433 12.207 -0.015 -0.358 0.014 0.290 -0.041 -0.588 -0.032 -0.767 0.000
τ 0.159 9.319 -0.007 -0.517 0.010 0.337 0.008 0.226 -0.026 -1.087 0.001
ρ 0.150 6.890 -0.037 -1.820 0.049 1.450 0.045 1.340 -0.040 -1.610 0.003

D) Copula Approach - Constant with Parametric Marginals
Dist 0.321 10.260 -0.051 -1.770 0.039 0.743 -0.114 -2.076 -0.009 -0.220 0.003
ADF 0.667 15.844 -0.045 -1.000 0.066 0.875 -0.003 -0.004 -0.042 -0.949 0.001
τ 0.406 11.780 -0.010 -0.250 -0.021 -0.359 0.024 0.417 0.014 0.360 0.000
ρ 0.302 9.250 -0.041 -1.530 0.081 2.060 0.031 0.620 -0.041 -1.140 0.002

E) Copula Approach - Time-varying with Parametric Marginals
Dist 0.328 9.000 -0.044 -1.260 0.181 1.780 -0.095 -1.370 0.013 0.270 0.007
ADF 0.642 14.170 -0.075 -1.410 0.056 0.760 -0.007 -0.110 -0.043 -1.090 0.002
τ 0.353 11.580 -0.020 -0.460 0.034 0.700 0.024 0.380 0.002 0.050 0.001
ρ 0.303 10.190 -0.059 -2.450 0.121 2.760 0.032 0.740 -0.050 -1.570 0.005

MONTHLY DEPENDENCE

A) Distance Approach
Dist 17.44 2.330 -0.639 -2.121 0.586 1.567 -0.116 -0.254 -0.112 -0.307 0.019
ADF 25.93 4.220 -1.102 -1.929 0.253 0.407 -0.232 -0.256 0.009 0.025 0.042
τ 17.42 1.966 -0.699 -1.234 0.310 0.604 0.671 0.640 -0.061 -0.113 0.037
ρ 14.02 2.047 -0.100 -0.211 0.604 1.134 0.862 0.880 0.672 1.514 0.042

B) Cointegration Approach
Dist 12.21 5.372 -0.322 -1.999 0.050 0.123 -0.236 -0.469 0.393 2.318 0.046
ADF 19.97 6.940 -0.419 -2.532 0.659 1.840 -0.043 -0.107 0.113 0.542 0.025
τ 19.09 2.606 -0.308 -0.484 0.072 0.181 0.615 0.641 0.199 0.404 0.019
ρ 12.19 4.274 -0.172 -0.708 0.767 1.614 0.333 0.382 0.391 1.532 0.048

C) Copula Approach - Constant with Empirical Marginals
Dist 2.99 8.416 -0.159 -1.280 0.010 0.113 -0.151 -1.385 -0.126 -1.792 0.027
ADF 9.65 8.031 -0.278 -0.975 0.103 0.290 -0.220 -1.022 0.077 0.611 0.016
τ 3.62 7.161 -0.296 -2.384 0.210 1.442 -0.240 -1.531 -0.173 -2.134 0.056
ρ 3.30 7.024 -0.176 -1.324 0.172 1.420 -0.053 -0.418 -0.100 -1.003 0.018

D) Copula Approach - Constant with Parametric Marginals
Dist 7.14 5.983 -0.223 -0.892 -0.102 -0.404 -0.006 -0.030 -0.096 -0.491 0.015
ADF 14.88 6.584 -0.089 -0.309 0.632 1.274 0.949 2.352 0.151 0.789 0.045
τ 9.24 3.958 -0.063 -0.352 -0.422 -1.433 -0.322 -1.548 0.078 0.489 0.022
ρ 6.61 4.134 -0.080 -0.413 0.328 1.209 -0.015 -0.066 -0.028 -0.139 0.014

E) Copula Approach - Time-varying with Parametric Marginals
Dist 7.47 4.702 -0.429 -1.453 0.287 0.986 -0.279 -1.247 -0.088 -0.348 0.031
ADF 14.27 6.724 -0.136 -0.730 0.498 1.090 0.796 2.283 0.184 0.970 0.037
τ 7.92 4.120 -0.018 -0.112 -0.192 -0.840 -0.215 -1.238 0.044 0.245 0.007
ρ 6.62 5.695 -0.176 -0.970 0.389 1.412 -0.047 -0.192 0.043 0.225 0.027

Notes: This table depicts the exposure of all pairs trading variants to the four risk factors of Carhart (1997).
Specifically, the table reports the coefficients, Newey-West t-statistics and R2 resulting from the regression of
daily and monthly pairs trading returns on the factors (i) excess market returns, (ii) size (Small minus Big) ,
(iii) value (High minus Low) and (iv) momentum. Newey-West standard errors are computed by including the
optimal number of lags subject to the lowest AIC. At 95% significant values are printed bold.
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4.5.5 Transaction Costs

The previous sections have shown that all pairs trading variants are highly profitable before

transaction costs. Since we are dealing with high-frequency data and some pairs trading variants

generated up to around 48000 trades within 18 years, including transaction costs in our analysis

plays a major role in determining whether these strategies are actually trade-able in reality. Do

and Faff (2012) have extensively discussed trading costs that arise within pairs trading frame-

works. They estimate commissions per trade for institutional traders to decline from 10 basis

points (bps) in 1998 to 7-9 bps in 2007-2009. Retail traders trade at around 10 bps according to

Bogomolov (2013). In addition to these broker commissions, other transaction costs are market

impact and short selling costs. Concerning both, we follow Krauss and Stübinger (2015) and

estimate the bid-ask spread to be 5 bps and short selling costs to be negligible. All in all, assum-

ing 10 bps per transaction, this yields conservative 4×10+2×5 = 50 bps per ’round-trip’ trade

(four trades and two bid-ask spread crossings). The upper half of table 13 tabulates the daily

excess return distribution (on committed capital) resulting from this conservative approach. It

becomes clear that all of the pairs trading variants loose their profitability under this transac-

tion cost scheme -a finding in line with Do and Faff (2012). Except for the variants ’Distance

approach - ADF’ and ’Distance approach - Spearman’s ρ’, all pairs trading frameworks show sig-

nificantly negative average excess returns, with up to 73% negative daily returns. No investor

would trade under these circumstances.

We believe, however, that the above used transaction cost scheme is too conservative and not

representative considering average transaction costs in 2016. For example, as one of the largest

brokers, ’Interactive Brokers’ offers commission fees of 0.005 USD per U.S. equity share (with a

maximum of 0.5% of transaction volume), which will yield a more moderate cost structure com-

pared to above -unless one would trade with pennystocks5. Taking this cost structure as repre-

sentative, together with the 10 bps per RT trade for two bid-ask spread crossings, we now re-

evaluate the daily excess return distribution by investing a fixed amount of 100,000$ daily. Short

selling costs are still negligible. The lower half of table 13 reports the corresponding daily excess

return distribution. We can observe a completely different picture compared to before. While

all copula variants remain slightly unprofitable, the distance and cointegration approaches be-

5The exact cost structure can be found here: https://www.interactivebrokers.com/en/index.php?f=1590p=stocks1.
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come successful. In both frameworks, we find positive daily average excess returns, significantly

different from zero in six out of eight cases. Interestingly, the best performing selection cri-

terion without transaction costs, the ADF statistic, does not remain superior to the remaining

criteria after accounting for commissions. On the contrary, in all instances the Kendall’s τ cri-

terion shows largest mean excess returns, followed by the Spearman’s ρ criterion. We find two

explainations for the change in profitability under this transaction cost scheme. First, as de-

scribed in Section 4.5.1, the ADF criterion generated considerably more trades than the other

criteria, which is now penalized by transaction costs. Second, and more interestingly, the ADF

criterion implies an average of 35 bps per RT, compared to much lower 26 bps per RT for the

Euclidean distance criterion and 25 bps per RT for both non-linear correlation measures. This

significantly higher cost per RT trade suggests that the ADF criterion more often tends to select

stocks with lower share prices. The reason for this tendency could be that lower priced stocks,

i.e. pennystocks, are known to be rather volatile and thus more likely to generate higher degrees

of spread mean-reversion.

In light of our findings in Section 4.5.3, however, the question arises whether the reported daily

excess return distributions of table 13 are representative for future pairs trading returns. To

answer this question, we plot the cumulative returns of the four most lucrative variants after IB

transaction costs in figure 10. This figure clearly confirms our suspicion that the reported daily

excess return distribution is biased towards the impressive average returns in the beginning of

the sample. It appears, that the sample is dividable into three phases: (1) From 1998 - 2004, we

experience large profits. (2) From 2004 - 2008, small but still positive profits are generated. (3)

From 2008 - 2016, all strategies become unprofitable with negative average returns.

Overall, we can conclude that transaction costs considerably affect the profitability of high-

frequency pairs trading strategies and the final performance of selection criteria. Even though

some variants show positive daily average returns considering the whole data sample, the recent

decline in pairs trading profitability suggests that neither pairs trading variant will generate pos-

itive returns in the near future. The only ’hope’ for future high-frequency pairs trading is that the

strategies benefit from the ever decreasing transaction costs in the industry. In the meantime,

researchers and traders should refrain from utilizing the Euclidean distance between assets as

selection criterion. We find both non-linear correlation measures to be superior.
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Table 13: Daily Excess return Distribution on Committed Capital after Transaction Costs

Average t-stat Median Std. Skew. Kurt. Min. Max. Ret. < 0 VaR ES
(%) (NW) (%) (%) (%) (%) (%) (1%) (1%)

Conservative approach: 0.5% for 1 RT (4 trades)

(A) Distance Approach
Dist -0.34 -6.50 -0.43 1.73 0.54 17.63 -18.3 19.7 66.4 -5.19 -7.91
ADF -0.03 -0.51 -0.16 2.10 1.40 12.23 -16.8 19.7 54.9 -5.23 -7.68
τ -0.16 -2.08 -0.29 1.70 1.60 39.53 -28.0 19.7 60.4 -3.72 -5.59
ρ -0.09 -1.14 -0.16 1.67 2.05 17.95 -16.7 19.7 55.0 -3.74 -5.90

(B) Cointegration Approach
Dist -0.45 -10.83 -0.52 1.87 1.68 37.79 -29.3 29.2 69.8 -5.75 -11.12
ADF -0.18 -3.86 -0.29 2.22 1.25 20.52 -19.7 27.3 58.1 -5.84 -9.24
τ -0.29 -3.66 -0.50 1.80 2.93 42.02 -19.7 29.2 67.7 -4.12 -6.06
ρ -0.29 -4.58 -0.43 1.72 2.88 39.83 -13.4 29.2 66.3 -4.16 -6.31

(C) Copula Approach - Constant with Empirical Marginals
Dist -0.53 -13.14 -0.37 1.26 1.82 43.10 -11.6 21.5 72.9 -3.90 -5.85
ADF -0.63 -12.05 -0.76 2.12 1.46 17.97 -16.6 25.5 71.3 -6.21 -8.72
τ -0.51 -12.60 -0.34 1.08 0.00 10.04 -11.0 9.8 72.4 -3.47 -4.63
ρ -0.55 -13.85 -0.45 1.18 1.31 28.63 -20.5 17.1 74.1 -3.50 -4.96

(D) Copula Approach - Constant with Parametric Marginals
Dist -0.68 -14.51 -0.71 1.63 0.69 21.95 -18.3 20.1 73.8 -5.02 -7.91
ADF -0.55 -9.83 -0.72 2.12 1.05 9.83 -15.0 21.3 69.4 -5.72 -8.46
τ -0.55 -9.75 -0.66 3.37 1.49 23.54 -15.9 22.6 72.4 -4.04 -5.71
ρ -0.51 -9.68 -0.56 1.49 3.34 53.17 -12.7 29.6 71.2 -3.91 -5.48

E) Copula Approach - Time-varying with Parametric Marginals
Dist -0.65 -13.69 -0.67 1.69 1.60 35.02 -18.3 26.5 73.9 -4.95 -7.89
ADF -0.59 -10.16 -0.74 2.10 1.29 13.10 -15.0 23.0 69.4 -5.73 -8.48
τ -0.52 -10.84 -0.58 1.43 -0.12 29.81 -24.9 14.0 70.6 -3.81 -5.71
ρ -0.51 -9.96 -0.56 1.48 3.31 54.03 -12.7 28.6 71.3 -3.85 -5.41

Interactive Brokers approach: 0.10% per RT plus 0.005$ per share

(A) Distance Approach
Dist 0.10 2.43 0.04 1.77 -0.08 15.63 -18.2 18.6 45.2 -5.18 -7.83
ADF 0.21 3.64 0.13 2.08 0.73 9.72 -28.0 18.6 42.8 -5.18 -7.52
τ 0.26 4.19 0.07 1.70 1.08 36.64 -28.1 18.6 40.5 -3.43 -5.43
ρ 0.22 3.64 0.05 1.64 1.62 17.37 -16.9 18.6 38.6 -3.50 -5.72

(B) Cointegration Approach
Dist 0.01 0.22 0.01 1.92 1.02 32.49 -29.2 32.6 47.8 -5.67 -11.08
ADF 0.08 1.81 0.02 2.24 0.53 16.69 -19.5 27.3 45.7 -5.65 -9.17
τ 0.24 3.99 0.11 1.83 2.32 37.43 -19.5 32.6 44.9 -3.92 -6.04
ρ 0.11 2.67 0.05 1.70 2.36 38.65 -13.3 32.6 46.4 -4.13 -6.28

(C) Copula Approach - Constant with Empirical Marginals
Dist -0.16 -9.63 -0.20 1.21 1.55 49.78 -11.5 23.5 57.6 -3.69 -5.83
ADF -0.20 -5.52 -0.21 2.10 0.97 17.51 -16.6 26.0 56.2 -6.02 -8.69
τ -0.13 -7.53 -0.12 1.03 -0.02 13.31 -11.0 10.0 55.4 -3.01 -4.35
ρ -0.14 -7.64 -0.16 1.12 0.96 34.12 -20.4 17.0 56.9 -3.21 -4.77

(D) Copula Approach - Constant with Parametric Marginals
Dist -0.18 -5.66 -0.10 1.62 -0.05 22.16 -18.2 20.1 53.7 -5.02 -7.86
ADF -0.18 -3.81 -0.20 2.08 0.46 9.39 -14.9 21.4 56.1 -5.67 -8.36
τ -0.04 -1.05 -0.10 1.50 1.10 22.46 -15.2 22.9 54.4 -3.78 -5.57
ρ -0.07 -1.93 -0.04 1.45 2.84 50.51 -12.6 29.8 51.9 -3.77 -5.41

E) Copula Approach - Time-varying with Parametric Marginals
Dist -0.16 -4.96 -0.10 1.67 0.86 33.16 -18.2 27.0 54.0 -4.92 -7.81
ADF -0.21 -4.12 -0.22 2.07 0.52 10.62 -14.9 22.4 56.4 -5.60 -8.31
τ -0.06 -1.61 -0.06 1.41 -0.58 33.22 -24.2 14.7 52.6 -3.55 -5.53
ρ -0.06 -1.84 -0.04 1.43 2.83 52.11 -12.6 29.1 52.1 -3.55 -5.33

Notes: This table displays the daily excess return distributions (on committed capital) under the light of
two transaction cost schemes. The t-statistics are computed with Newey-West (NW) standard errors. The
number of lags included are determined subject to the lowest AIC. Statistically significant values (at 95%)
are printed bold.
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Figure 10: Cumulative return plots of the four best performing pairs trading variants after trans-
action costs (Interactive Brokers approach).

5 Conclusion

This thesis is about the empirical evaluation of three pairs trading strategies (distance, cointe-

gration, copula variants) and four pairs selection criteria (Euclidean distance, degree of spread

mean-reversion, Kendall’s τ, Spearman’s ρ). In particular, we compare the performance of either

strategy and selection criterion, by means of a high-frequency trading strategy.

Our contribution to the literature is two-fold. The first contribution is entirely methodologi-

cal. To the best of our knowledge, we are the first to utilize a time-varying copula-based pairs

trading algorithm. We update the copula parameter throughout the trading period by using an

expanding window size. Moreover, we examine the benefit of estimating empirical marginal

distributions, next to the common way of fitting parametric marginals. Finally, we introduce

the use of two non-linear correlation measures as pairs selection criteria, Kendall’s τ and Spear-

man’s ρ. In the recent pairs trading literature, most authors selected pairs according to their

Euclidean distance.

The second contribution is entirely empirical. We develop an intraday strategy and apply all

pairs trading variants on U.S. goldmine stocks. The data are in minute resolution and cover the
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time from January 1998 to April 2016. In terms of time-span, this dataset can be regarded as

the longest of all high-frequency pairs trading applications in the literature so far. Concerning

copula-based pairs trading, this thesis represents the first high-frequency application. Before

transaction costs, we find all pairs trading variants to be highly profitable with average daily

excess returns of 13 - 104 bps. In total, the distance approach generates highest average re-

turns, followed by the cointegration method. The copula-based framework performs compa-

rably poor. Among their variants, we find considerably higher returns by fitting parametric

marginal distributions. Furthermore, we do not observe significant improvements by varying

the copula parameter. Even though the copula-based method tends to generate more round-

trip trades per day, falsely estimated parameter considerably decrease profitability by induc-

ing wrong transaction signals. Among the pairs selection criteria, the degree of spread mean-

reversion proves to be most profitable, followed by Kendall’s τ and very similar Spearman’s ρ and

Euclidean distance. Decisive for the superiority of both criteria are more generated (round-trip)

trades and winrates of up to 66%. Highly appealing are the risk-adjusted return characteristics

of the pairs trading strategies. With annual Sharpe ratios of up to 6.25, the distance approach

proves to be the best risk-rewarded strategy. Over time, we find a sharp decline in pairs trading

profitability. Moreover, we recognize that differences in Sharpe ratios among the three trading

frameworks become smaller. A common risk factor analysis shows that neither of the pairs trad-

ing variants is greatly exposed to systematic risk, leading to statistically and economically sig-

nificant alphas. Transaction costs greatly affect the profitability of high-frequency pairs trading.

While the distance and cointegration approaches still manage to achieve positive (significant)

average daily returns of up to 26 bps over the whole sample, the declining returns in recent years

suggest that neither of the pairs trading methods will be lucrative anymore. The only hope for

high-frequency pairs trading is provided by the ever decreasing transaction costs in the indus-

try. Under lower commission fees, traders should then refrain from selecting pairs according

to the conventional selection criteria. Both non-linear correlation measures, Kendall’s τ and

Spearman’s ρ, provide lower risk and higher average returns after transaction costs.

Related to the existing pairs trading literature, our findings show the following properties. First,

regarding the superiority of pairs trading frameworks, we find similar results as Rad et al. (2015),

yet contradicting findings compared to Liew and Wu (2013) and Xie et al. (2014). While the two
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latter papers conclude that the copula-based method is superior, we find the distance and coin-

tegration approaches to be more profitable. In terms of generated trading opportunities, how-

ever, our findings are in line with Xie et al. (2014) - the copula method indeed seems to generate

more round-trip trades per day. Second, concerning a decline in pairs trading profitability our

findings confirm Do and Faff (2010). Finally, after accounting for transaction costs we examine

an unprofitable copula-based strategy, in a similar manner as Stander et al. (2013). Moreover,

we also examine high-frequency pairs trading to be highly sensitive to transaction costs, simi-

larly as Kishore (2012).

Based on our findings, we can conclude that the simplest form of pairs trading, the distance

approach, is hard to beat. The mere challenge in advancing the copula-based framework lies

in the correct estimation of the parameter. Only then, the advantages inherent with the use

of copulas may be fully observed. Further research could thus be aimed at estimating more

sophisticated time-varying copula models. Inspiration can be found in Manner and Reznikova

(2012). Furthermore, we conclude that it is not optimal to select pairs according to the most

conventional criterion - the minimum Euclidean distance between pair constituents. We rather

suggest to select pairs subject to their highest Kendall’s τ correlation coefficient. However, there

is still great room for further research, with several unexamined correlation measures to choose

from. As a relatively new concept, for instance, one could investigate the use of the ’randomized

dependency coefficient’ by Lopez-Paz, Henning and Schölkopf (2013). This concept appears to

be promising as it is closely linked to copulas. Finally, due to their tendency to generate many

small returns at high-frequency, we observe great difficulty for the pairs trading strategies to

succeed after transaction costs. Therefore, further research could be aimed at exploring ways

which generate fewer, yet larger returns at high-frequency.
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A Most frequently selected pairs

(a) (b)

(c) (d)

(e) (f)

Figure 11: These pie charts show the five most frequently selected pairs for either selection cri-
terion.
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B Copula Estimation Error - An Illustration

As described in Section 4.5.1, wrongly estimated copula parameter might induce false transac-

tion signals. In this Appendix we illustrate this issue.

For illustration purposes, we choose a rather extreme case of parameter estimation error. Let

us assume that the true (minutely) marginal distributions of stocks A and B are represented by

Generalized Extreme Value (GEV) distributions, with location parameter µ = −0.00008, scale

parameter σ = 0.00188 and shape parameter k = −0.852 and k = −0.685 respectively. Assum-

ing that we are able to correctly estimate µ and σ, we only fit a Gaussian distribution to the

returns and hence are not able to fully capture the correct marginal distributions (for simplicity

we fit a Gaussian distribution now - in the thesis we would estimate the additional degrees of

freedom to fit a Student-t distribution). Figure 12 illustrates this dilemma, by plotting the prob-

ability density functions of the two true GEV distributions and the fitted normal distribution.

It becomes apparent, that the Gaussian distribution attaches more probability to large positive

returns, while the GEV distributions truly generate no large positive returns at all. Moreover, the

Gaussian distribution significantly underestimates small positive returns.
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Figure 12: True and fitted marginal PDFs for stocks A and B, with µ=−0.00008 and σ= 0.00188.
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We further assume that both stocks are truly uncorrelated, yet we falsely estimate their corre-

lation to be ρ = 0.35 during the formation period. We utilize this correlation estimate to fit a

Gaussian copula and trade on only one of the two induced spreads for simplicity. Using the same

length as trading period, we proceed by simulating two uncorrelated returns r A,t and rB ,t from

the GEV distributions in every minute. These returns are directly transformed to u =Φ−1
(
r A,t

)
and v =Φ−1

(
rB ,t

)
, with Φ−1 being the inverse of our fitted Gaussian distribution. In the follow-

ing, we plug u, v and ρ = 0.35 in the conditional Gaussian copula function and construct the

copula spread.

Figure 13 plots the Euclidean distance between the two simulated price series in (a) and the

resulting copula spread in (b). At 11:14, the copula spread triggered trades and reversed them

at 11:59. In (a) it can be observed that this RT trade happens to be negative, due to the fact

that both prices further diverged from each other by the time of exiting the position. Clearly,

the estimation error of both the marginal distributions and the copula parameter is too large

to adequately specify the copula spread. Consequently negative RT trades may occur in the

copula approach. Contrary to the copula method, the distance framework would have entered

positions as well, yet not exited before market closing (which would have resulted in a far bigger

loss in this case).

In order to fully understand the importance of adequate parameter estimates, we further con-

duct a small simulation study. To this end, we simulate both a series including estimation error

and a series without estimation error. The error series is simulated by making use of the same

assumptions and settings as described above. The error-free series is gained by assuming a true

correlation between both assets of ρ = 0.35 and by assuming the marginal distributions to be

Gaussian, instead of GEV. Hence, we then simulate the returns r A,t and rB ,t from a multivariate

normal distribution with µ =
−0.00008

−0.00008

 and Σ =
3.53×10−6 1.24×10−6

1.24×10−6 3.53×10−6

. Repeating the

simulation 1000 times and computing the overall percentage of negative RT trades for either

variant yields 15% negative RT trades for the error series and 1.5% (slightly) negative RT trades

for the error-free variant- a great improvement. Yet, it becomes clear that even with no estima-

tion error, RT trades may become negative. A reason could be that the simulated returns are not

exactly correlated with ρ = 0.35, after all.
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Figure 13: The plot in (a) shows the Euclidean distance between both cumulative price series.
The plot in (b) is the Copula spread resulting from the simulated returns.
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C Formula Sheet for Performance Evaluation

Let ert = rt − r f ,t denote the daily excess return, with r f ,t as the daily 1 month U.S. T-Bill rate.

Furthermore let ēr denote the mean daily excess return and σ denote the sample standard

deviation of the daily excess returns. The downside standard deviation is denoted by σd =√
1
T

∑T
t=1

(
min

(
rt − r f ,t ,0

))2.

Annualized Sharpe Ratio = ēr

σ
×p

252

Annualized Sortino Ratio = ēr

σd
×p

252

Annualized Omega =
∑T

t=1 ert × 1{ert>0}∑T
t=1 |ert |× 1{ert<0}

×p
252

Annualized Upside Potential =
∑T

t=1 ert × 1{ert>0}

σd
×p

252

Concerning the drawdown measures, let p(t ) denote the portfolio value of a strategy at time

t , in an interval from [0,T]. Furthermore let the annualized excess return be denoted as ar =(
1+ cumr et

)1/18.25 −1, with cumr et =∏T
t=1(1+ert ).

Maximum Drawdown = max
τ∈(0,T )

[maxt∈(0,τ) p(t )−p(τ)

maxt∈(0,τ)p(t )

]

Calmar Ratio = ar

Maximum Drawdown

Sterling Ratio = ar

Average yearly Maximum Drawdown

Burke Ratio = ar√
Sum of 10 largest(Maximum drawdowns)2
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Ulcer Index =
√∑T

t=1 R2
t

T
,

Rt = 100× p(t )−maxτ∈(0,t ) p(τ)

maxτ∈(0,t ) p(τ)

Martin Ratio = ar

Ulcer Index

D Sharpe Ratio Comparison Test

In this thesis we use the by Memmel (2003) extended version of the Jobson and Korkie (1981)

Sharpe ratio comparison test. Let (µx , µy ) and (σx , σy ) denote the means and standard devia-

tions of return series x and y respectively. Furthermore, let σx y denote their covariance. Then,

the z-score of the null hypothesis of no difference can be computed as

z = σxµy −σyµxp
θ

,

where

θ = 1

T

(
2σ2

xσ
2
y −2σxσyσx y +0.5µ2

xσ
2
y +0.5µ2

yσ
2
x −

µxµyσ
2
x y

σxσy

)
.
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E Subperiod Analysis - Daily average Returns
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Figure 14: Daily average Return Bar Charts over two-year horizons.
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